Loading…

Hypoplastic particle finite element model for cutting tool-soil interaction simulations: Numerical analysis and experimental validation

This study presents numerical and experimental models for the analysis of the excavation of soft soils by means of a cutting tool. The computational model is constructed using an Updated Lagrangean (UL) velocity-based Finite Element approach. A hypoplastic formulation is employed to describe the con...

Full description

Saved in:
Bibliographic Details
Published in:Underground space (Beijing) 2018-03, Vol.3 (1), p.61-71
Main Authors: Leon Bal, Abdiel Ramon, Hoppe, Ulrich, Dang, Thai Son, Hackl, Klaus, Meschke, Günther
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This study presents numerical and experimental models for the analysis of the excavation of soft soils by means of a cutting tool. The computational model is constructed using an Updated Lagrangean (UL) velocity-based Finite Element approach. A hypoplastic formulation is employed to describe the constitutive behavior of soft soils. Large displacements and deformations of the ground resulting from the cutting tool-soil interaction are handled by means of the Particle Finite Element method, characterized by a global re-meshing strategy and a boundary identification procedure called α-shape technique. The capabilities and performance of the proposed model are demonstrated through comparative analyses between experiments and simulations of cutting tool-soft soil interactions. The experiments are performed using an excavation device at Ruhr-Universität Bochum (RUB), Germany. The main details concerning the setup and calibration and evolution of the measured draft forces are discussed. Selected computational results characterizing the cutting tool-soft soil interaction including the topology of the free surface, void ratio distribution ahead of the tool, spatio-temporal evolution of the reaction forces and abrasive wear behavior are evaluated.
ISSN:2467-9674
2467-9674
DOI:10.1016/j.undsp.2018.01.008