Loading…
Experimental Observation of Topologically Protected Helical Edge Modes in Patterned Elastic Plates
Topologically protected waves in classical media provide unique opportunities for one-way wave transport and immunity to defects. Contrary to acoustics and electromagnetics, their observation in elastic solids has so far been elusive because of the presence of multiple modes and their tendency to hy...
Saved in:
Published in: | Physical review. X 2018-09, Vol.8 (3), p.031074, Article 031074 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Topologically protected waves in classical media provide unique opportunities for one-way wave transport and immunity to defects. Contrary to acoustics and electromagnetics, their observation in elastic solids has so far been elusive because of the presence of multiple modes and their tendency to hybridize at interfaces. Here, we report on the experimental investigation of topologically protected helical edge modes in elastic plates patterned with an array of triangular holes, along with circular holes that produce an accidental degeneracy of two Dirac cones. Such a degeneracy is subsequently lifted by careful breaking of the symmetry along the thickness direction, which emulates the spin orbital coupling in the quantum spin Hall effect. The joining of two plates that are mirror-symmetric copies of each other about the plate midthickness introduces a nontrivial interface that supports helical edge waves. The experimental observation of these topologically protected wave modes in elastic continuous plates opens avenues for the practical realization of structural components with topologically nontrivial waveguiding properties and their application to elastic waveguiding and confinement. |
---|---|
ISSN: | 2160-3308 2160-3308 |
DOI: | 10.1103/PhysRevX.8.031074 |