Loading…
Solutions of Navier-Stokes Equation with Coriolis Force
We investigate the Navier-Stokes equation in the presence of Coriolis force in this article. First, the vortex equation with the Coriolis effect is discussed. It turns out that the vorticity can be generated due to a rotation coming from the Coriolis effect, Ω. In both steady state and two-dimension...
Saved in:
Published in: | Advances in mathematical physics 2017-01, Vol.2017 (2017), p.1-9 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We investigate the Navier-Stokes equation in the presence of Coriolis force in this article. First, the vortex equation with the Coriolis effect is discussed. It turns out that the vorticity can be generated due to a rotation coming from the Coriolis effect, Ω. In both steady state and two-dimensional flow, the vorticity vector ω gets shifted by the amount of -2Ω. Second, we consider the specific expression of the velocity vector of the Navier-Stokes equation in two dimensions. For the two-dimensional potential flow v→=∇→ϕ, the equation satisfied by ϕ is independent of Ω. The remaining Navier-Stokes equation reduces to the nonlinear partial differential equations with respect to the velocity and the corresponding exact solution is obtained. Finally, the steady convective diffusion equation is considered for the concentration c and can be solved with the help of Navier-Stokes equation for two-dimensional potential flow. The convective diffusion equation can be solved in three dimensions with a simple choice of c. |
---|---|
ISSN: | 1687-9120 1687-9139 |
DOI: | 10.1155/2017/7042686 |