Loading…

Solutions of Navier-Stokes Equation with Coriolis Force

We investigate the Navier-Stokes equation in the presence of Coriolis force in this article. First, the vortex equation with the Coriolis effect is discussed. It turns out that the vorticity can be generated due to a rotation coming from the Coriolis effect, Ω. In both steady state and two-dimension...

Full description

Saved in:
Bibliographic Details
Published in:Advances in mathematical physics 2017-01, Vol.2017 (2017), p.1-9
Main Authors: Lee, Sunggeun, Lim, Hankwon, Ryi, Shin-Kun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c493t-291ebe23a829b4807cac01a35a66c5c63bde9e1afdb2fa69c4c98c160a7e20633
cites cdi_FETCH-LOGICAL-c493t-291ebe23a829b4807cac01a35a66c5c63bde9e1afdb2fa69c4c98c160a7e20633
container_end_page 9
container_issue 2017
container_start_page 1
container_title Advances in mathematical physics
container_volume 2017
creator Lee, Sunggeun
Lim, Hankwon
Ryi, Shin-Kun
description We investigate the Navier-Stokes equation in the presence of Coriolis force in this article. First, the vortex equation with the Coriolis effect is discussed. It turns out that the vorticity can be generated due to a rotation coming from the Coriolis effect, Ω. In both steady state and two-dimensional flow, the vorticity vector ω gets shifted by the amount of -2Ω. Second, we consider the specific expression of the velocity vector of the Navier-Stokes equation in two dimensions. For the two-dimensional potential flow v→=∇→ϕ, the equation satisfied by ϕ is independent of Ω. The remaining Navier-Stokes equation reduces to the nonlinear partial differential equations with respect to the velocity and the corresponding exact solution is obtained. Finally, the steady convective diffusion equation is considered for the concentration c and can be solved with the help of Navier-Stokes equation for two-dimensional potential flow. The convective diffusion equation can be solved in three dimensions with a simple choice of c.
doi_str_mv 10.1155/2017/7042686
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_b5c0dd147cde4f4d941c5c06fe30510b</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_b5c0dd147cde4f4d941c5c06fe30510b</doaj_id><sourcerecordid>1932733129</sourcerecordid><originalsourceid>FETCH-LOGICAL-c493t-291ebe23a829b4807cac01a35a66c5c63bde9e1afdb2fa69c4c98c160a7e20633</originalsourceid><addsrcrecordid>eNqFkDFPwzAQhS0EEhV0Y0aRGCHUZ8d2PKKqhUoVDIXZchyHuoS6tRMq_j0pqcrILXe6-_Te6SF0BfgegLERwSBGAmeE5_wEDYDnIpVA5elxJvgcDWNc4a6oZFyyARILX7eN8-uY-Cp51l_OhnTR-A8bk8m21ftTsnPNMhn74HztYjL1wdhLdFbpOtrhoV-gt-nkdfyUzl8eZ-OHeWoySZuUSLCFJVTnRBZZjoXRBoOmTHNumOG0KK20oKuyIJXm0mRG5gY41sISzCm9QLNet_R6pTbBferwrbx26nfhw7vSoXGmtqpgBpclZMKUNquyUmbQWWBeWYoZ4KLTuum1NsFvWxsbtfJtWHfvK5CUCEqByI666ykTfIzBVkdXwGqftNonrQ5Jd_htjy_dutQ79x993dO2Y2yl_2gg3QeC_gAueoXP</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1932733129</pqid></control><display><type>article</type><title>Solutions of Navier-Stokes Equation with Coriolis Force</title><source>Wiley Online Library Open Access</source><source>Publicly Available Content (ProQuest)</source><creator>Lee, Sunggeun ; Lim, Hankwon ; Ryi, Shin-Kun</creator><contributor>Radu, Eugen</contributor><creatorcontrib>Lee, Sunggeun ; Lim, Hankwon ; Ryi, Shin-Kun ; Radu, Eugen</creatorcontrib><description>We investigate the Navier-Stokes equation in the presence of Coriolis force in this article. First, the vortex equation with the Coriolis effect is discussed. It turns out that the vorticity can be generated due to a rotation coming from the Coriolis effect, Ω. In both steady state and two-dimensional flow, the vorticity vector ω gets shifted by the amount of -2Ω. Second, we consider the specific expression of the velocity vector of the Navier-Stokes equation in two dimensions. For the two-dimensional potential flow v→=∇→ϕ, the equation satisfied by ϕ is independent of Ω. The remaining Navier-Stokes equation reduces to the nonlinear partial differential equations with respect to the velocity and the corresponding exact solution is obtained. Finally, the steady convective diffusion equation is considered for the concentration c and can be solved with the help of Navier-Stokes equation for two-dimensional potential flow. The convective diffusion equation can be solved in three dimensions with a simple choice of c.</description><identifier>ISSN: 1687-9120</identifier><identifier>EISSN: 1687-9139</identifier><identifier>DOI: 10.1155/2017/7042686</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Accretion disks ; Chemical engineering ; Coriolis effect ; Coriolis force ; Fluid dynamics ; Fluid flow ; Fluid mechanics ; Fluids ; Navier-Stokes equations ; Nonlinear differential equations ; Nonlinear equations ; Partial differential equations ; Physics ; Potential flow ; Reynolds number ; Steady state ; Stokes law (fluid mechanics) ; Two dimensional flow ; Vortices ; Vorticity</subject><ispartof>Advances in mathematical physics, 2017-01, Vol.2017 (2017), p.1-9</ispartof><rights>Copyright © 2017 Sunggeun Lee et al.</rights><rights>Copyright © 2017 Sunggeun Lee et al.; This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c493t-291ebe23a829b4807cac01a35a66c5c63bde9e1afdb2fa69c4c98c160a7e20633</citedby><cites>FETCH-LOGICAL-c493t-291ebe23a829b4807cac01a35a66c5c63bde9e1afdb2fa69c4c98c160a7e20633</cites><orcidid>0000-0002-1074-0251 ; 0000-0002-8981-6422</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1932733129/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1932733129?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25732,27903,27904,36991,44569,74872</link.rule.ids></links><search><contributor>Radu, Eugen</contributor><creatorcontrib>Lee, Sunggeun</creatorcontrib><creatorcontrib>Lim, Hankwon</creatorcontrib><creatorcontrib>Ryi, Shin-Kun</creatorcontrib><title>Solutions of Navier-Stokes Equation with Coriolis Force</title><title>Advances in mathematical physics</title><description>We investigate the Navier-Stokes equation in the presence of Coriolis force in this article. First, the vortex equation with the Coriolis effect is discussed. It turns out that the vorticity can be generated due to a rotation coming from the Coriolis effect, Ω. In both steady state and two-dimensional flow, the vorticity vector ω gets shifted by the amount of -2Ω. Second, we consider the specific expression of the velocity vector of the Navier-Stokes equation in two dimensions. For the two-dimensional potential flow v→=∇→ϕ, the equation satisfied by ϕ is independent of Ω. The remaining Navier-Stokes equation reduces to the nonlinear partial differential equations with respect to the velocity and the corresponding exact solution is obtained. Finally, the steady convective diffusion equation is considered for the concentration c and can be solved with the help of Navier-Stokes equation for two-dimensional potential flow. The convective diffusion equation can be solved in three dimensions with a simple choice of c.</description><subject>Accretion disks</subject><subject>Chemical engineering</subject><subject>Coriolis effect</subject><subject>Coriolis force</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Fluid mechanics</subject><subject>Fluids</subject><subject>Navier-Stokes equations</subject><subject>Nonlinear differential equations</subject><subject>Nonlinear equations</subject><subject>Partial differential equations</subject><subject>Physics</subject><subject>Potential flow</subject><subject>Reynolds number</subject><subject>Steady state</subject><subject>Stokes law (fluid mechanics)</subject><subject>Two dimensional flow</subject><subject>Vortices</subject><subject>Vorticity</subject><issn>1687-9120</issn><issn>1687-9139</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqFkDFPwzAQhS0EEhV0Y0aRGCHUZ8d2PKKqhUoVDIXZchyHuoS6tRMq_j0pqcrILXe6-_Te6SF0BfgegLERwSBGAmeE5_wEDYDnIpVA5elxJvgcDWNc4a6oZFyyARILX7eN8-uY-Cp51l_OhnTR-A8bk8m21ftTsnPNMhn74HztYjL1wdhLdFbpOtrhoV-gt-nkdfyUzl8eZ-OHeWoySZuUSLCFJVTnRBZZjoXRBoOmTHNumOG0KK20oKuyIJXm0mRG5gY41sISzCm9QLNet_R6pTbBferwrbx26nfhw7vSoXGmtqpgBpclZMKUNquyUmbQWWBeWYoZ4KLTuum1NsFvWxsbtfJtWHfvK5CUCEqByI666ykTfIzBVkdXwGqftNonrQ5Jd_htjy_dutQ79x993dO2Y2yl_2gg3QeC_gAueoXP</recordid><startdate>20170101</startdate><enddate>20170101</enddate><creator>Lee, Sunggeun</creator><creator>Lim, Hankwon</creator><creator>Ryi, Shin-Kun</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-1074-0251</orcidid><orcidid>https://orcid.org/0000-0002-8981-6422</orcidid></search><sort><creationdate>20170101</creationdate><title>Solutions of Navier-Stokes Equation with Coriolis Force</title><author>Lee, Sunggeun ; Lim, Hankwon ; Ryi, Shin-Kun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c493t-291ebe23a829b4807cac01a35a66c5c63bde9e1afdb2fa69c4c98c160a7e20633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Accretion disks</topic><topic>Chemical engineering</topic><topic>Coriolis effect</topic><topic>Coriolis force</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Fluid mechanics</topic><topic>Fluids</topic><topic>Navier-Stokes equations</topic><topic>Nonlinear differential equations</topic><topic>Nonlinear equations</topic><topic>Partial differential equations</topic><topic>Physics</topic><topic>Potential flow</topic><topic>Reynolds number</topic><topic>Steady state</topic><topic>Stokes law (fluid mechanics)</topic><topic>Two dimensional flow</topic><topic>Vortices</topic><topic>Vorticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Sunggeun</creatorcontrib><creatorcontrib>Lim, Hankwon</creatorcontrib><creatorcontrib>Ryi, Shin-Kun</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East &amp; Africa Database</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Engineering Database</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>Directory of Open Access Journals</collection><jtitle>Advances in mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Sunggeun</au><au>Lim, Hankwon</au><au>Ryi, Shin-Kun</au><au>Radu, Eugen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Solutions of Navier-Stokes Equation with Coriolis Force</atitle><jtitle>Advances in mathematical physics</jtitle><date>2017-01-01</date><risdate>2017</risdate><volume>2017</volume><issue>2017</issue><spage>1</spage><epage>9</epage><pages>1-9</pages><issn>1687-9120</issn><eissn>1687-9139</eissn><abstract>We investigate the Navier-Stokes equation in the presence of Coriolis force in this article. First, the vortex equation with the Coriolis effect is discussed. It turns out that the vorticity can be generated due to a rotation coming from the Coriolis effect, Ω. In both steady state and two-dimensional flow, the vorticity vector ω gets shifted by the amount of -2Ω. Second, we consider the specific expression of the velocity vector of the Navier-Stokes equation in two dimensions. For the two-dimensional potential flow v→=∇→ϕ, the equation satisfied by ϕ is independent of Ω. The remaining Navier-Stokes equation reduces to the nonlinear partial differential equations with respect to the velocity and the corresponding exact solution is obtained. Finally, the steady convective diffusion equation is considered for the concentration c and can be solved with the help of Navier-Stokes equation for two-dimensional potential flow. The convective diffusion equation can be solved in three dimensions with a simple choice of c.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2017/7042686</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-1074-0251</orcidid><orcidid>https://orcid.org/0000-0002-8981-6422</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1687-9120
ispartof Advances in mathematical physics, 2017-01, Vol.2017 (2017), p.1-9
issn 1687-9120
1687-9139
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_b5c0dd147cde4f4d941c5c06fe30510b
source Wiley Online Library Open Access; Publicly Available Content (ProQuest)
subjects Accretion disks
Chemical engineering
Coriolis effect
Coriolis force
Fluid dynamics
Fluid flow
Fluid mechanics
Fluids
Navier-Stokes equations
Nonlinear differential equations
Nonlinear equations
Partial differential equations
Physics
Potential flow
Reynolds number
Steady state
Stokes law (fluid mechanics)
Two dimensional flow
Vortices
Vorticity
title Solutions of Navier-Stokes Equation with Coriolis Force
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T03%3A00%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Solutions%20of%20Navier-Stokes%20Equation%20with%20Coriolis%20Force&rft.jtitle=Advances%20in%20mathematical%20physics&rft.au=Lee,%20Sunggeun&rft.date=2017-01-01&rft.volume=2017&rft.issue=2017&rft.spage=1&rft.epage=9&rft.pages=1-9&rft.issn=1687-9120&rft.eissn=1687-9139&rft_id=info:doi/10.1155/2017/7042686&rft_dat=%3Cproquest_doaj_%3E1932733129%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c493t-291ebe23a829b4807cac01a35a66c5c63bde9e1afdb2fa69c4c98c160a7e20633%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1932733129&rft_id=info:pmid/&rfr_iscdi=true