Loading…
Solutions of Navier-Stokes Equation with Coriolis Force
We investigate the Navier-Stokes equation in the presence of Coriolis force in this article. First, the vortex equation with the Coriolis effect is discussed. It turns out that the vorticity can be generated due to a rotation coming from the Coriolis effect, Ω. In both steady state and two-dimension...
Saved in:
Published in: | Advances in mathematical physics 2017-01, Vol.2017 (2017), p.1-9 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c493t-291ebe23a829b4807cac01a35a66c5c63bde9e1afdb2fa69c4c98c160a7e20633 |
---|---|
cites | cdi_FETCH-LOGICAL-c493t-291ebe23a829b4807cac01a35a66c5c63bde9e1afdb2fa69c4c98c160a7e20633 |
container_end_page | 9 |
container_issue | 2017 |
container_start_page | 1 |
container_title | Advances in mathematical physics |
container_volume | 2017 |
creator | Lee, Sunggeun Lim, Hankwon Ryi, Shin-Kun |
description | We investigate the Navier-Stokes equation in the presence of Coriolis force in this article. First, the vortex equation with the Coriolis effect is discussed. It turns out that the vorticity can be generated due to a rotation coming from the Coriolis effect, Ω. In both steady state and two-dimensional flow, the vorticity vector ω gets shifted by the amount of -2Ω. Second, we consider the specific expression of the velocity vector of the Navier-Stokes equation in two dimensions. For the two-dimensional potential flow v→=∇→ϕ, the equation satisfied by ϕ is independent of Ω. The remaining Navier-Stokes equation reduces to the nonlinear partial differential equations with respect to the velocity and the corresponding exact solution is obtained. Finally, the steady convective diffusion equation is considered for the concentration c and can be solved with the help of Navier-Stokes equation for two-dimensional potential flow. The convective diffusion equation can be solved in three dimensions with a simple choice of c. |
doi_str_mv | 10.1155/2017/7042686 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_b5c0dd147cde4f4d941c5c06fe30510b</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_b5c0dd147cde4f4d941c5c06fe30510b</doaj_id><sourcerecordid>1932733129</sourcerecordid><originalsourceid>FETCH-LOGICAL-c493t-291ebe23a829b4807cac01a35a66c5c63bde9e1afdb2fa69c4c98c160a7e20633</originalsourceid><addsrcrecordid>eNqFkDFPwzAQhS0EEhV0Y0aRGCHUZ8d2PKKqhUoVDIXZchyHuoS6tRMq_j0pqcrILXe6-_Te6SF0BfgegLERwSBGAmeE5_wEDYDnIpVA5elxJvgcDWNc4a6oZFyyARILX7eN8-uY-Cp51l_OhnTR-A8bk8m21ftTsnPNMhn74HztYjL1wdhLdFbpOtrhoV-gt-nkdfyUzl8eZ-OHeWoySZuUSLCFJVTnRBZZjoXRBoOmTHNumOG0KK20oKuyIJXm0mRG5gY41sISzCm9QLNet_R6pTbBferwrbx26nfhw7vSoXGmtqpgBpclZMKUNquyUmbQWWBeWYoZ4KLTuum1NsFvWxsbtfJtWHfvK5CUCEqByI666ykTfIzBVkdXwGqftNonrQ5Jd_htjy_dutQ79x993dO2Y2yl_2gg3QeC_gAueoXP</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1932733129</pqid></control><display><type>article</type><title>Solutions of Navier-Stokes Equation with Coriolis Force</title><source>Wiley Online Library Open Access</source><source>Publicly Available Content (ProQuest)</source><creator>Lee, Sunggeun ; Lim, Hankwon ; Ryi, Shin-Kun</creator><contributor>Radu, Eugen</contributor><creatorcontrib>Lee, Sunggeun ; Lim, Hankwon ; Ryi, Shin-Kun ; Radu, Eugen</creatorcontrib><description>We investigate the Navier-Stokes equation in the presence of Coriolis force in this article. First, the vortex equation with the Coriolis effect is discussed. It turns out that the vorticity can be generated due to a rotation coming from the Coriolis effect, Ω. In both steady state and two-dimensional flow, the vorticity vector ω gets shifted by the amount of -2Ω. Second, we consider the specific expression of the velocity vector of the Navier-Stokes equation in two dimensions. For the two-dimensional potential flow v→=∇→ϕ, the equation satisfied by ϕ is independent of Ω. The remaining Navier-Stokes equation reduces to the nonlinear partial differential equations with respect to the velocity and the corresponding exact solution is obtained. Finally, the steady convective diffusion equation is considered for the concentration c and can be solved with the help of Navier-Stokes equation for two-dimensional potential flow. The convective diffusion equation can be solved in three dimensions with a simple choice of c.</description><identifier>ISSN: 1687-9120</identifier><identifier>EISSN: 1687-9139</identifier><identifier>DOI: 10.1155/2017/7042686</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Accretion disks ; Chemical engineering ; Coriolis effect ; Coriolis force ; Fluid dynamics ; Fluid flow ; Fluid mechanics ; Fluids ; Navier-Stokes equations ; Nonlinear differential equations ; Nonlinear equations ; Partial differential equations ; Physics ; Potential flow ; Reynolds number ; Steady state ; Stokes law (fluid mechanics) ; Two dimensional flow ; Vortices ; Vorticity</subject><ispartof>Advances in mathematical physics, 2017-01, Vol.2017 (2017), p.1-9</ispartof><rights>Copyright © 2017 Sunggeun Lee et al.</rights><rights>Copyright © 2017 Sunggeun Lee et al.; This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c493t-291ebe23a829b4807cac01a35a66c5c63bde9e1afdb2fa69c4c98c160a7e20633</citedby><cites>FETCH-LOGICAL-c493t-291ebe23a829b4807cac01a35a66c5c63bde9e1afdb2fa69c4c98c160a7e20633</cites><orcidid>0000-0002-1074-0251 ; 0000-0002-8981-6422</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1932733129/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1932733129?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25732,27903,27904,36991,44569,74872</link.rule.ids></links><search><contributor>Radu, Eugen</contributor><creatorcontrib>Lee, Sunggeun</creatorcontrib><creatorcontrib>Lim, Hankwon</creatorcontrib><creatorcontrib>Ryi, Shin-Kun</creatorcontrib><title>Solutions of Navier-Stokes Equation with Coriolis Force</title><title>Advances in mathematical physics</title><description>We investigate the Navier-Stokes equation in the presence of Coriolis force in this article. First, the vortex equation with the Coriolis effect is discussed. It turns out that the vorticity can be generated due to a rotation coming from the Coriolis effect, Ω. In both steady state and two-dimensional flow, the vorticity vector ω gets shifted by the amount of -2Ω. Second, we consider the specific expression of the velocity vector of the Navier-Stokes equation in two dimensions. For the two-dimensional potential flow v→=∇→ϕ, the equation satisfied by ϕ is independent of Ω. The remaining Navier-Stokes equation reduces to the nonlinear partial differential equations with respect to the velocity and the corresponding exact solution is obtained. Finally, the steady convective diffusion equation is considered for the concentration c and can be solved with the help of Navier-Stokes equation for two-dimensional potential flow. The convective diffusion equation can be solved in three dimensions with a simple choice of c.</description><subject>Accretion disks</subject><subject>Chemical engineering</subject><subject>Coriolis effect</subject><subject>Coriolis force</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Fluid mechanics</subject><subject>Fluids</subject><subject>Navier-Stokes equations</subject><subject>Nonlinear differential equations</subject><subject>Nonlinear equations</subject><subject>Partial differential equations</subject><subject>Physics</subject><subject>Potential flow</subject><subject>Reynolds number</subject><subject>Steady state</subject><subject>Stokes law (fluid mechanics)</subject><subject>Two dimensional flow</subject><subject>Vortices</subject><subject>Vorticity</subject><issn>1687-9120</issn><issn>1687-9139</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqFkDFPwzAQhS0EEhV0Y0aRGCHUZ8d2PKKqhUoVDIXZchyHuoS6tRMq_j0pqcrILXe6-_Te6SF0BfgegLERwSBGAmeE5_wEDYDnIpVA5elxJvgcDWNc4a6oZFyyARILX7eN8-uY-Cp51l_OhnTR-A8bk8m21ftTsnPNMhn74HztYjL1wdhLdFbpOtrhoV-gt-nkdfyUzl8eZ-OHeWoySZuUSLCFJVTnRBZZjoXRBoOmTHNumOG0KK20oKuyIJXm0mRG5gY41sISzCm9QLNet_R6pTbBferwrbx26nfhw7vSoXGmtqpgBpclZMKUNquyUmbQWWBeWYoZ4KLTuum1NsFvWxsbtfJtWHfvK5CUCEqByI666ykTfIzBVkdXwGqftNonrQ5Jd_htjy_dutQ79x993dO2Y2yl_2gg3QeC_gAueoXP</recordid><startdate>20170101</startdate><enddate>20170101</enddate><creator>Lee, Sunggeun</creator><creator>Lim, Hankwon</creator><creator>Ryi, Shin-Kun</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-1074-0251</orcidid><orcidid>https://orcid.org/0000-0002-8981-6422</orcidid></search><sort><creationdate>20170101</creationdate><title>Solutions of Navier-Stokes Equation with Coriolis Force</title><author>Lee, Sunggeun ; Lim, Hankwon ; Ryi, Shin-Kun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c493t-291ebe23a829b4807cac01a35a66c5c63bde9e1afdb2fa69c4c98c160a7e20633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Accretion disks</topic><topic>Chemical engineering</topic><topic>Coriolis effect</topic><topic>Coriolis force</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Fluid mechanics</topic><topic>Fluids</topic><topic>Navier-Stokes equations</topic><topic>Nonlinear differential equations</topic><topic>Nonlinear equations</topic><topic>Partial differential equations</topic><topic>Physics</topic><topic>Potential flow</topic><topic>Reynolds number</topic><topic>Steady state</topic><topic>Stokes law (fluid mechanics)</topic><topic>Two dimensional flow</topic><topic>Vortices</topic><topic>Vorticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Sunggeun</creatorcontrib><creatorcontrib>Lim, Hankwon</creatorcontrib><creatorcontrib>Ryi, Shin-Kun</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East & Africa Database</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Engineering Database</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>Directory of Open Access Journals</collection><jtitle>Advances in mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Sunggeun</au><au>Lim, Hankwon</au><au>Ryi, Shin-Kun</au><au>Radu, Eugen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Solutions of Navier-Stokes Equation with Coriolis Force</atitle><jtitle>Advances in mathematical physics</jtitle><date>2017-01-01</date><risdate>2017</risdate><volume>2017</volume><issue>2017</issue><spage>1</spage><epage>9</epage><pages>1-9</pages><issn>1687-9120</issn><eissn>1687-9139</eissn><abstract>We investigate the Navier-Stokes equation in the presence of Coriolis force in this article. First, the vortex equation with the Coriolis effect is discussed. It turns out that the vorticity can be generated due to a rotation coming from the Coriolis effect, Ω. In both steady state and two-dimensional flow, the vorticity vector ω gets shifted by the amount of -2Ω. Second, we consider the specific expression of the velocity vector of the Navier-Stokes equation in two dimensions. For the two-dimensional potential flow v→=∇→ϕ, the equation satisfied by ϕ is independent of Ω. The remaining Navier-Stokes equation reduces to the nonlinear partial differential equations with respect to the velocity and the corresponding exact solution is obtained. Finally, the steady convective diffusion equation is considered for the concentration c and can be solved with the help of Navier-Stokes equation for two-dimensional potential flow. The convective diffusion equation can be solved in three dimensions with a simple choice of c.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2017/7042686</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-1074-0251</orcidid><orcidid>https://orcid.org/0000-0002-8981-6422</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1687-9120 |
ispartof | Advances in mathematical physics, 2017-01, Vol.2017 (2017), p.1-9 |
issn | 1687-9120 1687-9139 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_b5c0dd147cde4f4d941c5c06fe30510b |
source | Wiley Online Library Open Access; Publicly Available Content (ProQuest) |
subjects | Accretion disks Chemical engineering Coriolis effect Coriolis force Fluid dynamics Fluid flow Fluid mechanics Fluids Navier-Stokes equations Nonlinear differential equations Nonlinear equations Partial differential equations Physics Potential flow Reynolds number Steady state Stokes law (fluid mechanics) Two dimensional flow Vortices Vorticity |
title | Solutions of Navier-Stokes Equation with Coriolis Force |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T03%3A00%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Solutions%20of%20Navier-Stokes%20Equation%20with%20Coriolis%20Force&rft.jtitle=Advances%20in%20mathematical%20physics&rft.au=Lee,%20Sunggeun&rft.date=2017-01-01&rft.volume=2017&rft.issue=2017&rft.spage=1&rft.epage=9&rft.pages=1-9&rft.issn=1687-9120&rft.eissn=1687-9139&rft_id=info:doi/10.1155/2017/7042686&rft_dat=%3Cproquest_doaj_%3E1932733129%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c493t-291ebe23a829b4807cac01a35a66c5c63bde9e1afdb2fa69c4c98c160a7e20633%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1932733129&rft_id=info:pmid/&rfr_iscdi=true |