Loading…

Actomyosin contractility-dependent matrix stretch and recoil induces rapid cell migration

Cells select from a diverse repertoire of migration strategies. Recent developments in tunable biomaterials have helped identify how extracellular matrix properties influence migration, however, many settings lack the fibrous architecture characteristic of native tissues. To investigate migration in...

Full description

Saved in:
Bibliographic Details
Published in:Nature communications 2019-03, Vol.10 (1), p.1186-12, Article 1186
Main Authors: Wang, William Y., Davidson, Christopher D., Lin, Daphne, Baker, Brendon M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Cells select from a diverse repertoire of migration strategies. Recent developments in tunable biomaterials have helped identify how extracellular matrix properties influence migration, however, many settings lack the fibrous architecture characteristic of native tissues. To investigate migration in fibrous contexts, we independently varied the alignment and stiffness of synthetic 3D fiber matrices and identified two phenotypically distinct migration modes. In contrast to stiff matrices where cells migrated continuously in a traditional mesenchymal fashion, cells in deformable matrices stretched matrix fibers to store elastic energy; subsequent adhesion failure triggered sudden matrix recoil and rapid cell translocation. Across a variety of cell types, traction force measurements revealed a relationship between cell contractility and the matrix stiffness where this migration mode occurred optimally. Given the prevalence of fibrous tissues, an understanding of how matrix structure and mechanics influences migration could improve strategies to recruit repair cells to wound sites or inhibit cancer metastasis. How cells migrate in fibrous tissues is still poorly understood. Here, with synthetic 3D fibre matrices of controlled alignment and stiffness, the authors report that cells in stiff matrices move slowly and continuously, but in softer, deformable matrices cells can rapidly slingshot forward via stretch and recoil of matrix fibres.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-019-09121-0