Loading…
Environmentally Friendly Green O-Alkylation Reaction for Ethenzamide Synthesis
Ethenzamide (2-ethoxybenzamide), besides acetylsalicylic acid, is one of the mostly used salicylic acid derivatives in pharmaceuticals. It has analgesic and anti-inflammatory effects that originate from the inhibition of cyclooxygenase (COX-1) activity, thus blocking prostaglandin synthesis. In this...
Saved in:
Published in: | Applied sciences 2025-01, Vol.15 (3), p.1342 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Ethenzamide (2-ethoxybenzamide), besides acetylsalicylic acid, is one of the mostly used salicylic acid derivatives in pharmaceuticals. It has analgesic and anti-inflammatory effects that originate from the inhibition of cyclooxygenase (COX-1) activity, thus blocking prostaglandin synthesis. In this work, efficient and eco-friendly methods were developed for the synthesis of ethenzamide via the O-alkylation reaction of salicylamide. The reactions were carried out under conventional conditions in a solvent-free system using variant solvents and different phase transfer catalysts (PTC) in the presence of microwave radiation or ultrasonic conditions. It was shown that in solvent-free conditions using TBAB as a catalyst, ethenzamide can be obtained within 15 min at 80 °C with 79% yield. Meanwhile, using microwave radiation under the same conditions, the reaction time can be shortened to 90 s with 92% yield. Notably, high yields can be achieved under PTC in water (or organic solvent-free) conditions using microwave radiation (2 min, 94%) or ultrasound (10 min, 95% efficiency). The studies prove that the PTC synthesis process of ethenzamide can be conducted under mild conditions, with a shorter reaction time and remarkably lower energy consumption in comparison to conventional processes, thus actualizing “green chemistry” for practical ethenzamide preparation. |
---|---|
ISSN: | 2076-3417 2076-3417 |
DOI: | 10.3390/app15031342 |