Loading…
Oscillation Theorems for Second-Order Quasilinear Neutral Functional Differential Equations
New oscillation criteria are established for the second-order nonlinear neutral functional differential equations of the form (r(t)|z′(t)|α−1z′(t))’+f(t,x[σ(t)])=0, t≥t0, where z(t)=x(t)+p(t)x(τ(t)), p∈C1([t0,∞),[0,∞)), and α≥1. Our results improve and extend some known results in the literature. So...
Saved in:
Published in: | Abstract and Applied Analysis 2012-01, Vol.2012 (2012), p.875-891-658 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | New oscillation criteria are established for the second-order nonlinear neutral functional differential equations of the form (r(t)|z′(t)|α−1z′(t))’+f(t,x[σ(t)])=0, t≥t0, where z(t)=x(t)+p(t)x(τ(t)), p∈C1([t0,∞),[0,∞)), and α≥1. Our results improve and extend some known results in the literature. Some examples are also provided to show the importance of these results. |
---|---|
ISSN: | 1085-3375 1687-0409 |
DOI: | 10.1155/2012/819342 |