Loading…
Oscillation Theorems for Second-Order Quasilinear Neutral Functional Differential Equations
New oscillation criteria are established for the second-order nonlinear neutral functional differential equations of the form (r(t)|z′(t)|α−1z′(t))’+f(t,x[σ(t)])=0, t≥t0, where z(t)=x(t)+p(t)x(τ(t)), p∈C1([t0,∞),[0,∞)), and α≥1. Our results improve and extend some known results in the literature. So...
Saved in:
Published in: | Abstract and Applied Analysis 2012-01, Vol.2012 (2012), p.875-891-658 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a584t-c585c3a6739a8a31a86382762d093cf95df716b632ee64501bf706863f6fc1d73 |
---|---|
cites | cdi_FETCH-LOGICAL-a584t-c585c3a6739a8a31a86382762d093cf95df716b632ee64501bf706863f6fc1d73 |
container_end_page | 891-658 |
container_issue | 2012 |
container_start_page | 875 |
container_title | Abstract and Applied Analysis |
container_volume | 2012 |
creator | Sun, Shurong Li, Tongxing Han, Zhen-Lai Li, Hua |
description | New oscillation criteria are established for the second-order nonlinear neutral functional differential equations of the form (r(t)|z′(t)|α−1z′(t))’+f(t,x[σ(t)])=0, t≥t0, where z(t)=x(t)+p(t)x(τ(t)), p∈C1([t0,∞),[0,∞)), and α≥1. Our results improve and extend some known results in the literature. Some examples are also provided to show the importance of these results. |
doi_str_mv | 10.1155/2012/819342 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_b79fa001aa5640c481133249d7016590</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><airiti_id>P20160825001_201212_201609090069_201609090069_875_891_658</airiti_id><doaj_id>oai_doaj_org_article_b79fa001aa5640c481133249d7016590</doaj_id><sourcerecordid>2754508591</sourcerecordid><originalsourceid>FETCH-LOGICAL-a584t-c585c3a6739a8a31a86382762d093cf95df716b632ee64501bf706863f6fc1d73</originalsourceid><addsrcrecordid>eNqFkc9rFDEUgAdRsFZPnoUBL6KMfZn8vilrq4XFrdiePIS3mcRmmZ20yQzif292Z1mpF8khLy9fPl7eq6qXBN4TwvlZC6Q9U0RT1j6qTohQsgEG-nGJQfGGUsmfVs9y3gAAlYydVD9W2Ya-xzHEob6-dTG5ba59TPV3Z-PQNavUuVR_mzCHPgwOU_3VTWPCvr6YBrt7VsJPwXuX3DCGcji_n_a6_Lx64rHP7sVhP61uLs6vF1-a5erz5eLjskGu2NhYrrilKCTVqJASVIKqVoq2A02t17zzkoi1oK1zgnEgay9BFMgLb0kn6Wl1OXu7iBtzl8IW028TMZh9IqafBtMYbO_MWmqPAASRCwaWKUIobZnuJBDBNRTXh9l1l-LG2dFNtg_dA-niZnnIHjZENIQKpphgVBTFm6PifnJ5NNuQrStNHlycsiGtopKwFlRBX_-DbuKUSkcLBVRRxkDsano3UzbFnJPzx3IImN3czW7uZp57od_O9G0YOvwV_gO_mmFXEOfxCHMAwXd_uZrvMaQwhr_lXRWLANUWjuyNxblP6bJA6IcHJblRmhjBFf0DtMfJ0g</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1038344060</pqid></control><display><type>article</type><title>Oscillation Theorems for Second-Order Quasilinear Neutral Functional Differential Equations</title><source>Wiley Online Library Open Access</source><source>Publicly Available Content (ProQuest)</source><creator>Sun, Shurong ; Li, Tongxing ; Han, Zhen-Lai ; Li, Hua</creator><contributor>Zafer, Agacik</contributor><creatorcontrib>Sun, Shurong ; Li, Tongxing ; Han, Zhen-Lai ; Li, Hua ; Zafer, Agacik</creatorcontrib><description>New oscillation criteria are established for the second-order nonlinear neutral functional differential equations of the form (r(t)|z′(t)|α−1z′(t))’+f(t,x[σ(t)])=0, t≥t0, where z(t)=x(t)+p(t)x(τ(t)), p∈C1([t0,∞),[0,∞)), and α≥1. Our results improve and extend some known results in the literature. Some examples are also provided to show the importance of these results.</description><identifier>ISSN: 1085-3375</identifier><identifier>EISSN: 1687-0409</identifier><identifier>DOI: 10.1155/2012/819342</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Limiteds</publisher><subject>Criteria ; Differential equations ; Inequality ; Nonlinearity ; Oscillations ; Science ; Studies ; Theorems</subject><ispartof>Abstract and Applied Analysis, 2012-01, Vol.2012 (2012), p.875-891-658</ispartof><rights>Copyright © 2012 Shurong Sun et al.</rights><rights>Copyright © 2012 Shurong Sun et al. Shurong Sun et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><rights>Copyright 2012 Hindawi Publishing Corporation</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a584t-c585c3a6739a8a31a86382762d093cf95df716b632ee64501bf706863f6fc1d73</citedby><cites>FETCH-LOGICAL-a584t-c585c3a6739a8a31a86382762d093cf95df716b632ee64501bf706863f6fc1d73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1038344060/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1038344060?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,25753,27924,27925,37012,37013,44590,75126</link.rule.ids></links><search><contributor>Zafer, Agacik</contributor><creatorcontrib>Sun, Shurong</creatorcontrib><creatorcontrib>Li, Tongxing</creatorcontrib><creatorcontrib>Han, Zhen-Lai</creatorcontrib><creatorcontrib>Li, Hua</creatorcontrib><title>Oscillation Theorems for Second-Order Quasilinear Neutral Functional Differential Equations</title><title>Abstract and Applied Analysis</title><description>New oscillation criteria are established for the second-order nonlinear neutral functional differential equations of the form (r(t)|z′(t)|α−1z′(t))’+f(t,x[σ(t)])=0, t≥t0, where z(t)=x(t)+p(t)x(τ(t)), p∈C1([t0,∞),[0,∞)), and α≥1. Our results improve and extend some known results in the literature. Some examples are also provided to show the importance of these results.</description><subject>Criteria</subject><subject>Differential equations</subject><subject>Inequality</subject><subject>Nonlinearity</subject><subject>Oscillations</subject><subject>Science</subject><subject>Studies</subject><subject>Theorems</subject><issn>1085-3375</issn><issn>1687-0409</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqFkc9rFDEUgAdRsFZPnoUBL6KMfZn8vilrq4XFrdiePIS3mcRmmZ20yQzif292Z1mpF8khLy9fPl7eq6qXBN4TwvlZC6Q9U0RT1j6qTohQsgEG-nGJQfGGUsmfVs9y3gAAlYydVD9W2Ya-xzHEob6-dTG5ba59TPV3Z-PQNavUuVR_mzCHPgwOU_3VTWPCvr6YBrt7VsJPwXuX3DCGcji_n_a6_Lx64rHP7sVhP61uLs6vF1-a5erz5eLjskGu2NhYrrilKCTVqJASVIKqVoq2A02t17zzkoi1oK1zgnEgay9BFMgLb0kn6Wl1OXu7iBtzl8IW028TMZh9IqafBtMYbO_MWmqPAASRCwaWKUIobZnuJBDBNRTXh9l1l-LG2dFNtg_dA-niZnnIHjZENIQKpphgVBTFm6PifnJ5NNuQrStNHlycsiGtopKwFlRBX_-DbuKUSkcLBVRRxkDsano3UzbFnJPzx3IImN3czW7uZp57od_O9G0YOvwV_gO_mmFXEOfxCHMAwXd_uZrvMaQwhr_lXRWLANUWjuyNxblP6bJA6IcHJblRmhjBFf0DtMfJ0g</recordid><startdate>20120101</startdate><enddate>20120101</enddate><creator>Sun, Shurong</creator><creator>Li, Tongxing</creator><creator>Han, Zhen-Lai</creator><creator>Li, Hua</creator><general>Hindawi Limiteds</general><general>Hindawi Puplishing Corporation</general><general>Hindawi Publishing Corporation</general><general>Hindawi Limited</general><scope>188</scope><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>DOA</scope></search><sort><creationdate>20120101</creationdate><title>Oscillation Theorems for Second-Order Quasilinear Neutral Functional Differential Equations</title><author>Sun, Shurong ; Li, Tongxing ; Han, Zhen-Lai ; Li, Hua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a584t-c585c3a6739a8a31a86382762d093cf95df716b632ee64501bf706863f6fc1d73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Criteria</topic><topic>Differential equations</topic><topic>Inequality</topic><topic>Nonlinearity</topic><topic>Oscillations</topic><topic>Science</topic><topic>Studies</topic><topic>Theorems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Shurong</creatorcontrib><creatorcontrib>Li, Tongxing</creatorcontrib><creatorcontrib>Han, Zhen-Lai</creatorcontrib><creatorcontrib>Li, Hua</creatorcontrib><collection>Chinese Electronic Periodical Services (CEPS)</collection><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East & Africa Database</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer science database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>DOAJ Open Access Journals</collection><jtitle>Abstract and Applied Analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Shurong</au><au>Li, Tongxing</au><au>Han, Zhen-Lai</au><au>Li, Hua</au><au>Zafer, Agacik</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Oscillation Theorems for Second-Order Quasilinear Neutral Functional Differential Equations</atitle><jtitle>Abstract and Applied Analysis</jtitle><date>2012-01-01</date><risdate>2012</risdate><volume>2012</volume><issue>2012</issue><spage>875</spage><epage>891-658</epage><pages>875-891-658</pages><issn>1085-3375</issn><eissn>1687-0409</eissn><abstract>New oscillation criteria are established for the second-order nonlinear neutral functional differential equations of the form (r(t)|z′(t)|α−1z′(t))’+f(t,x[σ(t)])=0, t≥t0, where z(t)=x(t)+p(t)x(τ(t)), p∈C1([t0,∞),[0,∞)), and α≥1. Our results improve and extend some known results in the literature. Some examples are also provided to show the importance of these results.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Limiteds</pub><doi>10.1155/2012/819342</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1085-3375 |
ispartof | Abstract and Applied Analysis, 2012-01, Vol.2012 (2012), p.875-891-658 |
issn | 1085-3375 1687-0409 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_b79fa001aa5640c481133249d7016590 |
source | Wiley Online Library Open Access; Publicly Available Content (ProQuest) |
subjects | Criteria Differential equations Inequality Nonlinearity Oscillations Science Studies Theorems |
title | Oscillation Theorems for Second-Order Quasilinear Neutral Functional Differential Equations |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T23%3A41%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Oscillation%20Theorems%20for%20Second-Order%20Quasilinear%20Neutral%20Functional%20Differential%20Equations&rft.jtitle=Abstract%20and%20Applied%20Analysis&rft.au=Sun,%20Shurong&rft.date=2012-01-01&rft.volume=2012&rft.issue=2012&rft.spage=875&rft.epage=891-658&rft.pages=875-891-658&rft.issn=1085-3375&rft.eissn=1687-0409&rft_id=info:doi/10.1155/2012/819342&rft_dat=%3Cproquest_doaj_%3E2754508591%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a584t-c585c3a6739a8a31a86382762d093cf95df716b632ee64501bf706863f6fc1d73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1038344060&rft_id=info:pmid/&rft_airiti_id=P20160825001_201212_201609090069_201609090069_875_891_658&rfr_iscdi=true |