Loading…

Oscillation Theorems for Second-Order Quasilinear Neutral Functional Differential Equations

New oscillation criteria are established for the second-order nonlinear neutral functional differential equations of the form (r(t)|z′(t)|α−1z′(t))’+f(t,x[σ(t)])=0, t≥t0, where z(t)=x(t)+p(t)x(τ(t)), p∈C1([t0,∞),[0,∞)), and α≥1. Our results improve and extend some known results in the literature. So...

Full description

Saved in:
Bibliographic Details
Published in:Abstract and Applied Analysis 2012-01, Vol.2012 (2012), p.875-891-658
Main Authors: Sun, Shurong, Li, Tongxing, Han, Zhen-Lai, Li, Hua
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a584t-c585c3a6739a8a31a86382762d093cf95df716b632ee64501bf706863f6fc1d73
cites cdi_FETCH-LOGICAL-a584t-c585c3a6739a8a31a86382762d093cf95df716b632ee64501bf706863f6fc1d73
container_end_page 891-658
container_issue 2012
container_start_page 875
container_title Abstract and Applied Analysis
container_volume 2012
creator Sun, Shurong
Li, Tongxing
Han, Zhen-Lai
Li, Hua
description New oscillation criteria are established for the second-order nonlinear neutral functional differential equations of the form (r(t)|z′(t)|α−1z′(t))’+f(t,x[σ(t)])=0, t≥t0, where z(t)=x(t)+p(t)x(τ(t)), p∈C1([t0,∞),[0,∞)), and α≥1. Our results improve and extend some known results in the literature. Some examples are also provided to show the importance of these results.
doi_str_mv 10.1155/2012/819342
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_b79fa001aa5640c481133249d7016590</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><airiti_id>P20160825001_201212_201609090069_201609090069_875_891_658</airiti_id><doaj_id>oai_doaj_org_article_b79fa001aa5640c481133249d7016590</doaj_id><sourcerecordid>2754508591</sourcerecordid><originalsourceid>FETCH-LOGICAL-a584t-c585c3a6739a8a31a86382762d093cf95df716b632ee64501bf706863f6fc1d73</originalsourceid><addsrcrecordid>eNqFkc9rFDEUgAdRsFZPnoUBL6KMfZn8vilrq4XFrdiePIS3mcRmmZ20yQzif292Z1mpF8khLy9fPl7eq6qXBN4TwvlZC6Q9U0RT1j6qTohQsgEG-nGJQfGGUsmfVs9y3gAAlYydVD9W2Ya-xzHEob6-dTG5ba59TPV3Z-PQNavUuVR_mzCHPgwOU_3VTWPCvr6YBrt7VsJPwXuX3DCGcji_n_a6_Lx64rHP7sVhP61uLs6vF1-a5erz5eLjskGu2NhYrrilKCTVqJASVIKqVoq2A02t17zzkoi1oK1zgnEgay9BFMgLb0kn6Wl1OXu7iBtzl8IW028TMZh9IqafBtMYbO_MWmqPAASRCwaWKUIobZnuJBDBNRTXh9l1l-LG2dFNtg_dA-niZnnIHjZENIQKpphgVBTFm6PifnJ5NNuQrStNHlycsiGtopKwFlRBX_-DbuKUSkcLBVRRxkDsano3UzbFnJPzx3IImN3czW7uZp57od_O9G0YOvwV_gO_mmFXEOfxCHMAwXd_uZrvMaQwhr_lXRWLANUWjuyNxblP6bJA6IcHJblRmhjBFf0DtMfJ0g</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1038344060</pqid></control><display><type>article</type><title>Oscillation Theorems for Second-Order Quasilinear Neutral Functional Differential Equations</title><source>Wiley Online Library Open Access</source><source>Publicly Available Content (ProQuest)</source><creator>Sun, Shurong ; Li, Tongxing ; Han, Zhen-Lai ; Li, Hua</creator><contributor>Zafer, Agacik</contributor><creatorcontrib>Sun, Shurong ; Li, Tongxing ; Han, Zhen-Lai ; Li, Hua ; Zafer, Agacik</creatorcontrib><description>New oscillation criteria are established for the second-order nonlinear neutral functional differential equations of the form (r(t)|z′(t)|α−1z′(t))’+f(t,x[σ(t)])=0, t≥t0, where z(t)=x(t)+p(t)x(τ(t)), p∈C1([t0,∞),[0,∞)), and α≥1. Our results improve and extend some known results in the literature. Some examples are also provided to show the importance of these results.</description><identifier>ISSN: 1085-3375</identifier><identifier>EISSN: 1687-0409</identifier><identifier>DOI: 10.1155/2012/819342</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Limiteds</publisher><subject>Criteria ; Differential equations ; Inequality ; Nonlinearity ; Oscillations ; Science ; Studies ; Theorems</subject><ispartof>Abstract and Applied Analysis, 2012-01, Vol.2012 (2012), p.875-891-658</ispartof><rights>Copyright © 2012 Shurong Sun et al.</rights><rights>Copyright © 2012 Shurong Sun et al. Shurong Sun et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><rights>Copyright 2012 Hindawi Publishing Corporation</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a584t-c585c3a6739a8a31a86382762d093cf95df716b632ee64501bf706863f6fc1d73</citedby><cites>FETCH-LOGICAL-a584t-c585c3a6739a8a31a86382762d093cf95df716b632ee64501bf706863f6fc1d73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1038344060/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1038344060?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,25753,27924,27925,37012,37013,44590,75126</link.rule.ids></links><search><contributor>Zafer, Agacik</contributor><creatorcontrib>Sun, Shurong</creatorcontrib><creatorcontrib>Li, Tongxing</creatorcontrib><creatorcontrib>Han, Zhen-Lai</creatorcontrib><creatorcontrib>Li, Hua</creatorcontrib><title>Oscillation Theorems for Second-Order Quasilinear Neutral Functional Differential Equations</title><title>Abstract and Applied Analysis</title><description>New oscillation criteria are established for the second-order nonlinear neutral functional differential equations of the form (r(t)|z′(t)|α−1z′(t))’+f(t,x[σ(t)])=0, t≥t0, where z(t)=x(t)+p(t)x(τ(t)), p∈C1([t0,∞),[0,∞)), and α≥1. Our results improve and extend some known results in the literature. Some examples are also provided to show the importance of these results.</description><subject>Criteria</subject><subject>Differential equations</subject><subject>Inequality</subject><subject>Nonlinearity</subject><subject>Oscillations</subject><subject>Science</subject><subject>Studies</subject><subject>Theorems</subject><issn>1085-3375</issn><issn>1687-0409</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqFkc9rFDEUgAdRsFZPnoUBL6KMfZn8vilrq4XFrdiePIS3mcRmmZ20yQzif292Z1mpF8khLy9fPl7eq6qXBN4TwvlZC6Q9U0RT1j6qTohQsgEG-nGJQfGGUsmfVs9y3gAAlYydVD9W2Ya-xzHEob6-dTG5ba59TPV3Z-PQNavUuVR_mzCHPgwOU_3VTWPCvr6YBrt7VsJPwXuX3DCGcji_n_a6_Lx64rHP7sVhP61uLs6vF1-a5erz5eLjskGu2NhYrrilKCTVqJASVIKqVoq2A02t17zzkoi1oK1zgnEgay9BFMgLb0kn6Wl1OXu7iBtzl8IW028TMZh9IqafBtMYbO_MWmqPAASRCwaWKUIobZnuJBDBNRTXh9l1l-LG2dFNtg_dA-niZnnIHjZENIQKpphgVBTFm6PifnJ5NNuQrStNHlycsiGtopKwFlRBX_-DbuKUSkcLBVRRxkDsano3UzbFnJPzx3IImN3czW7uZp57od_O9G0YOvwV_gO_mmFXEOfxCHMAwXd_uZrvMaQwhr_lXRWLANUWjuyNxblP6bJA6IcHJblRmhjBFf0DtMfJ0g</recordid><startdate>20120101</startdate><enddate>20120101</enddate><creator>Sun, Shurong</creator><creator>Li, Tongxing</creator><creator>Han, Zhen-Lai</creator><creator>Li, Hua</creator><general>Hindawi Limiteds</general><general>Hindawi Puplishing Corporation</general><general>Hindawi Publishing Corporation</general><general>Hindawi Limited</general><scope>188</scope><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>DOA</scope></search><sort><creationdate>20120101</creationdate><title>Oscillation Theorems for Second-Order Quasilinear Neutral Functional Differential Equations</title><author>Sun, Shurong ; Li, Tongxing ; Han, Zhen-Lai ; Li, Hua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a584t-c585c3a6739a8a31a86382762d093cf95df716b632ee64501bf706863f6fc1d73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Criteria</topic><topic>Differential equations</topic><topic>Inequality</topic><topic>Nonlinearity</topic><topic>Oscillations</topic><topic>Science</topic><topic>Studies</topic><topic>Theorems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Shurong</creatorcontrib><creatorcontrib>Li, Tongxing</creatorcontrib><creatorcontrib>Han, Zhen-Lai</creatorcontrib><creatorcontrib>Li, Hua</creatorcontrib><collection>Chinese Electronic Periodical Services (CEPS)</collection><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East &amp; Africa Database</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer science database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>DOAJ Open Access Journals</collection><jtitle>Abstract and Applied Analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Shurong</au><au>Li, Tongxing</au><au>Han, Zhen-Lai</au><au>Li, Hua</au><au>Zafer, Agacik</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Oscillation Theorems for Second-Order Quasilinear Neutral Functional Differential Equations</atitle><jtitle>Abstract and Applied Analysis</jtitle><date>2012-01-01</date><risdate>2012</risdate><volume>2012</volume><issue>2012</issue><spage>875</spage><epage>891-658</epage><pages>875-891-658</pages><issn>1085-3375</issn><eissn>1687-0409</eissn><abstract>New oscillation criteria are established for the second-order nonlinear neutral functional differential equations of the form (r(t)|z′(t)|α−1z′(t))’+f(t,x[σ(t)])=0, t≥t0, where z(t)=x(t)+p(t)x(τ(t)), p∈C1([t0,∞),[0,∞)), and α≥1. Our results improve and extend some known results in the literature. Some examples are also provided to show the importance of these results.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Limiteds</pub><doi>10.1155/2012/819342</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1085-3375
ispartof Abstract and Applied Analysis, 2012-01, Vol.2012 (2012), p.875-891-658
issn 1085-3375
1687-0409
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_b79fa001aa5640c481133249d7016590
source Wiley Online Library Open Access; Publicly Available Content (ProQuest)
subjects Criteria
Differential equations
Inequality
Nonlinearity
Oscillations
Science
Studies
Theorems
title Oscillation Theorems for Second-Order Quasilinear Neutral Functional Differential Equations
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T23%3A41%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Oscillation%20Theorems%20for%20Second-Order%20Quasilinear%20Neutral%20Functional%20Differential%20Equations&rft.jtitle=Abstract%20and%20Applied%20Analysis&rft.au=Sun,%20Shurong&rft.date=2012-01-01&rft.volume=2012&rft.issue=2012&rft.spage=875&rft.epage=891-658&rft.pages=875-891-658&rft.issn=1085-3375&rft.eissn=1687-0409&rft_id=info:doi/10.1155/2012/819342&rft_dat=%3Cproquest_doaj_%3E2754508591%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a584t-c585c3a6739a8a31a86382762d093cf95df716b632ee64501bf706863f6fc1d73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1038344060&rft_id=info:pmid/&rft_airiti_id=P20160825001_201212_201609090069_201609090069_875_891_658&rfr_iscdi=true