Loading…

Cyber Attacks in Cyber-Physical Microgrid Systems: A Comprehensive Review

The importance of and need for cyber security have increased in the last decade. The critical infrastructure of the country, modeled with cyber-physical systems (CPS), is becoming vulnerable because of a lack of efficient safety measures. Attackers are becoming more innovative, and attacks are becom...

Full description

Saved in:
Bibliographic Details
Published in:Energies (Basel) 2023-06, Vol.16 (12), p.4573
Main Authors: Suprabhath Koduru, Sriranga, Machina, Venkata Siva Prasad, Madichetty, Sreedhar
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The importance of and need for cyber security have increased in the last decade. The critical infrastructure of the country, modeled with cyber-physical systems (CPS), is becoming vulnerable because of a lack of efficient safety measures. Attackers are becoming more innovative, and attacks are becoming undetectable, thereby causing huge risks to these systems. In this scenario, intelligent and evolving detection methods should be introduced to replace basic and outworn methods. The ability of artificial intelligence (AI) to analyze data and predict outcomes has created an opportunity for researchers to explore the power of AI in cyber security. This article discusses new-age intelligence and smart techniques such as pattern recognition models, deep neural networks, generative adversarial networks, and reinforcement learning for cyber security in CPS. The differences between the traditional security methods used in information technology and the security methods used in CPS are analyzed, and the need for a transition into intelligent methods is discussed in detail. A deep neural network-based controller that detects and mitigates cyber attacks is designed for microgrid systems. As a case study, a stealthy local covert attack that overcomes the existing microgrid protection is modeled. The ability of the DNN controller to detect and mitigate the SLCA is observed. The experiment is performed in a simulation and also in real-time to analyze the effectiveness of AI in cyber security.
ISSN:1996-1073
1996-1073
DOI:10.3390/en16124573