Loading…
Development of Vertical Farming Systems from Waste Polymers Using Additive Manufacturing Techniques
Driven by population growth, rising living costs, and the urgent need to address climate change, sustainable food production and circular economy principles are becoming increasingly important. Conventional agriculture faces significant challenges, including land scarcity, water shortages, and disru...
Saved in:
Published in: | Recycling (Basel) 2024-10, Vol.9 (5), p.90 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Driven by population growth, rising living costs, and the urgent need to address climate change, sustainable food production and circular economy principles are becoming increasingly important. Conventional agriculture faces significant challenges, including land scarcity, water shortages, and disrupted supply chains. As a solution, cities are adopting vertical farming to enhance urban food security and promote circularity. This research introduces FLOAT (Farming Lab on a Trough), an innovative vertical farming system made from bio-polymers and recycled polyethylene terephthalate glyco (rPETG) pellets from plastic bottles. FLOAT’s design emphasizes sustainability and closed-loop material usage. The study showcases the versatility of additive manufacturing (AM) in creating complex geometries with fully functional 1:1 prototypes. These prototypes highlight FLOAT’s potential as a scalable and adaptable solution for sustainable food production in urban settings, contributing to improved food security and environmental sustainability. By integrating FLOAT with conventional practices, we aim to exceed Singapore’s 2030 food security targets and achieve lasting urban food resilience. FLOAT aims to scale sustainable food production, fostering community ties with food, and nurturing future responsibility. |
---|---|
ISSN: | 2313-4321 2313-4321 |
DOI: | 10.3390/recycling9050090 |