Loading…

Selenium nanoparticles promotes intestinal development in broilers by inhibiting intestinal inflammation and NLRP3 signaling pathway compared with other selenium sources

This study aimed to investigate how various selenium sources affect the intestinal health of broiler chickens. A total of 384, one-day-old Arbor Acres broilers were weighed and randomly allocated to four treatment groups. The control diet was a basal diet added with: 0.2 mg/kg Sodium Selenite (SS-co...

Full description

Saved in:
Bibliographic Details
Published in:Poultry science 2024-09, Vol.103 (9), p.103958, Article 103958
Main Authors: Chen, Yanhong, Luo, Caiwei, Li, Shu, Liu, Xingbo, Guo, Yanbing, Li, Yuxin, Wang, Yuanzhi, Yuan, Jianmin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This study aimed to investigate how various selenium sources affect the intestinal health of broiler chickens. A total of 384, one-day-old Arbor Acres broilers were weighed and randomly allocated to four treatment groups. The control diet was a basal diet added with: 0.2 mg/kg Sodium Selenite (SS-control), 0.2 mg/kg Selenium nano-particles (Nano-Se), 0.2 mg/kg Selenomethionine (SeMet), and 0.2 mg/kg Selenocysteine (Sec) as the treatments. The results indicated that Nano-Se and SeMet were effective in enhancing the villus height (VH) and the villus height/crypt depth ratio (VH/CD) in the jejunum compared to (SS) (P < 0.05). The inclusion of Nano-Se into the diets increased the mRNA levels of zonula occluden-1 (ZO-1), ZO-2, Occludin, Claudin-1, and Claudin-3 compared to the SS diet (P < 0.05). The SeMet increased the levels of ZO-1 and Claudin-3 compared to the SS (P < 0.05). Moreover, SeMet upregulated the marker genes of intestinal enteroendocrine cells, stem cells, and epithelial cells compared to the SS diet (P < 0.05). However, supplementation of Nano-Se reduced the mRNA levels of interleukin 1β (IL-1β), and IL-8 and the concentration of reactive oxygen species (ROS) in the jejunum compared to the SS (P < 0.05). The Nano-Se and SeMet also increased the protein levels of CAT and SOD compared to the SS and Sec diet (P < 0.05). The number of the goblet cells and Mucin-2 (Muc2) levels were the highest in the Nano-Se group (P < 0.05). The protein expression levels of goblet cell differentiation regulator (v-myc avian myelocytomatosis viral oncogene homolog, c-Myc) were highest in the Nano-Se compared to the SS diet (P < 0.05). The Nano-Se decreased the mRNA and protein levels of NLRP3 signaling pathway-related genes compared to the SS diet (P < 0.05). In conclusion, our study demonstrated that Nano-Se and SeMet are better at improving the intestinal health of 21-day-old broilers. Additionally, Nano-Se demonstrated superior antioxidant and anti-inflammatory effects, promoting the development of intestinal goblet cells by modifying the NLRP3 signaling pathway.
ISSN:0032-5791
1525-3171
1525-3171
DOI:10.1016/j.psj.2024.103958