Loading…
On a superlinear periodic boundary value problem with vanishing Green's function
We prove the existence of positive solutions for the boundary value problem \[ \begin{cases} y^{\prime \prime }+a(t)y=\lambda g(t)f(y),\quad 0\leq t\leq 2\pi, \\ y(0)=y(2\pi ),\quad y^{\prime }(0)=y^{\prime }(2\pi ), \end{cases} \] where $\lambda $ is a positive parameter, $f$ is superlinear at $\in...
Saved in:
Published in: | Electronic journal of qualitative theory of differential equations 2016-01, Vol.2016 (55), p.1-12 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We prove the existence of positive solutions for the boundary value problem \[ \begin{cases} y^{\prime \prime }+a(t)y=\lambda g(t)f(y),\quad 0\leq t\leq 2\pi, \\ y(0)=y(2\pi ),\quad y^{\prime }(0)=y^{\prime }(2\pi ), \end{cases} \] where $\lambda $ is a positive parameter, $f$ is superlinear at $\infty$ and could change sign, and the associated Green's function may have zeros. |
---|---|
ISSN: | 1417-3875 1417-3875 |
DOI: | 10.14232/ejqtde.2016.1.55 |