Loading…
A NOTE ON β-DERIVATIONS IN PRIME NEAR RING
In this paper, we prove commutativity of prime near rings by using the notion of β-derivations. Let M be a prime near ring. If there exist p,q ϵ M and two sided nonzero β-derivation f on M, where β:M→M is a homomorphism, satisfying the following conditions: f([s,t])=s^p [β(s),β(t)]s^q ∀ s,t ϵ M f([s...
Saved in:
Published in: | Matrix science mathematic (Online) 2021-07, Vol.5 (1), p.20-23 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this paper, we prove commutativity of prime near rings by using the notion of β-derivations. Let M be a prime near ring. If there exist p,q ϵ M and two sided nonzero β-derivation f on M, where β:M→M is a homomorphism, satisfying the following conditions: f([s,t])=s^p [β(s),β(t)]s^q ∀ s,t ϵ M f([s,t])=-s^p [β(s),β(t)]s^q ∀ s,t ϵ M |
---|---|
ISSN: | 2521-0831 2521-084X |
DOI: | 10.26480/msmk.01.2021.20.23 |