Loading…

Pedestrian Trajectory Prediction in Extremely Crowded Scenarios

Pedestrian trajectory prediction under crowded circumstances is a challenging problem owing to human interaction and the complexity of the trajectory pattern. Various methods have been proposed for solving this problem, ranging from traditional Bayesian analysis to Social Force model and deep learni...

Full description

Saved in:
Bibliographic Details
Published in:Sensors (Basel, Switzerland) Switzerland), 2019-03, Vol.19 (5), p.1223
Main Authors: Shi, Xiaodan, Shao, Xiaowei, Guo, Zhiling, Wu, Guangming, Zhang, Haoran, Shibasaki, Ryosuke
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Pedestrian trajectory prediction under crowded circumstances is a challenging problem owing to human interaction and the complexity of the trajectory pattern. Various methods have been proposed for solving this problem, ranging from traditional Bayesian analysis to Social Force model and deep learning methods. However, most existing models heavily depend on specific scenarios because the trajectory model is constructed in absolute coordinates even though the motion trajectory as well as human interaction are in relative motion. In this study, a novel trajectory prediction model is proposed to capture the relative motion of pedestrians in extremely crowded scenarios. Trajectory sequences and human interaction are first represented with relative motion and then integrated to our model to predict pedestrians' trajectories. The proposed model is based on Long Short Term Memory (LSTM) structure and consists of an encoder and a decoder which are trained by truncated back propagation. In addition, an anisotropic neighborhood setting is proposed instead of traditional neighborhood analysis. The proposed approach is validated using trajectory data acquired at an extremely crowded train station in Tokyo, Japan. The trajectory prediction experiments demonstrated that the proposed method outperforms existing methods and is stable for predictions of varying length even when the model is trained with a controlled short trajectory sequence.
ISSN:1424-8220
1424-8220
DOI:10.3390/s19051223