Loading…
Glycine significantly enhances bacterial membrane vesicle production: a powerful approach for isolation of LPS‐reduced membrane vesicles of probiotic Escherichia coli
Summary Bacterial membrane vesicles (MVs) have attracted strong interest in recent years as novel nanoparticle delivery platforms. Glycine is known to induce morphological changes in the outer layer of bacteria. We report here that glycine dramatically facilitates MV production in a flagella‐deficie...
Saved in:
Published in: | Microbial biotechnology 2020-07, Vol.13 (4), p.1162-1178 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Summary
Bacterial membrane vesicles (MVs) have attracted strong interest in recent years as novel nanoparticle delivery platforms. Glycine is known to induce morphological changes in the outer layer of bacteria. We report here that glycine dramatically facilitates MV production in a flagella‐deficient mutant of the non‐pathogenic probiotic Escherichia coli strain Nissle 1917. Supplementation of culture medium with 1.0% glycine induced cell deformation at the early exponential phase, eventually followed by quasi‐lysis during the late exponential to stationary phase. Glycine supplementation also significantly increased the number of MVs with enlarged particle size and altered the protein profile with an increase in the inner membrane and cytoplasmic protein contents as compared to non‐induced MVs. Of note, the endotoxin activity of glycine‐induced MVs was approximately eightfold or sixfold lower than that of non‐induced MVs when compared at equal protein or lipid concentrations respectively. Nevertheless, glycine‐induced MVs efficiently induced both immune responses in a mouse macrophage‐like cell line and adjuvanticity in an intranasal vaccine mouse model, comparable to those of non‐induced MVs. We propose that the present method of inducing MV production with glycine can be used for emerging biotechnological applications of MVs that have immunomodulatory activities, while dramatically reducing the presence of endotoxins.
Physiologically excessive amount of glycine significantly enhanced MV production from a flagella‐deficient clone of probiotic Escherichia coli strain Nissle 1917. The glycine‐induced MVs could elicit strong immune responses, while dramatically reducing the presence of endotoxins. |
---|---|
ISSN: | 1751-7915 1751-7915 |
DOI: | 10.1111/1751-7915.13572 |