Loading…

Selection against tandem splice sites affecting structured protein regions

Alternative selection of splice sites in tandem donors and acceptors is a major mode of alternative splicing. Here, we analyzed whether in-frame tandem sites leading to subtle mRNA insertions/deletions of 3, 6, or 9 nucleotides are under natural selection. We found multiple lines of evidence that th...

Full description

Saved in:
Bibliographic Details
Published in:BMC evolutionary biology 2008-03, Vol.8 (1), p.89-89
Main Authors: Hiller, Michael, Szafranski, Karol, Huse, Klaus, Backofen, Rolf, Platzer, Matthias
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Alternative selection of splice sites in tandem donors and acceptors is a major mode of alternative splicing. Here, we analyzed whether in-frame tandem sites leading to subtle mRNA insertions/deletions of 3, 6, or 9 nucleotides are under natural selection. We found multiple lines of evidence that the human protein coding sequences are under selection against such in-frame tandem splice events, indicating that these events are often deleterious. The strength of selection is not homogeneous within the coding sequence as protein regions that fold into a fixed 3D structure (intrinsically ordered) are under stronger selection, especially against sites with a strong minor splice site. Investigating structures of functional protein domains, we found that tandem acceptors are preferentially located at the domain surface and outside structural elements such as helices and sheets. Using three-species comparisons, we estimate that more than half of all mutations that create NAGNAG acceptors in the coding region have been eliminated by selection. We estimate that ~2,400 introns are under selection against possessing a tandem site.
ISSN:1471-2148
1471-2148
DOI:10.1186/1471-2148-8-89