Loading…

An MBSE Approach for Development of Resilient Automated Automotive Systems

Advanced driver assistance and automated driving systems must operate in complex environments and make safety-critical decisions. Resilient behavior of these systems in their targeted operation design domain is essential. In this paper, we describe developments in our Model-Based Systems Engineering...

Full description

Saved in:
Bibliographic Details
Published in:Systems (Basel) 2019-01, Vol.7 (1), p.1
Main Authors: D’Ambrosio, Joseph, Adiththan, Arun, Ordoukhanian, Edwin, Peranandam, Prakash, Ramesh, S., Madni, Azad, Sundaram, Padma
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Advanced driver assistance and automated driving systems must operate in complex environments and make safety-critical decisions. Resilient behavior of these systems in their targeted operation design domain is essential. In this paper, we describe developments in our Model-Based Systems Engineering (MBSE) approach to develop resilient safety-critical automated systems. An MBSE approach provides the ability to provide guarantees about system behavior and potentially reduces dependence on in-vehicle testing through the use of rigorous models and extensive simulation. We are applying MBSE methods to two key aspects of developing resilient systems: (1) ensuring resilient behavior through the use of Resilience Contracts for system decision making; and (2) applying simulation-based testing methods to verify the system handles all known scenarios and to validate the system against potential unknown scenarios. Resilience Contracts make use of contract-based design methods and Partially Observable Markov Decision Processes (POMDP), which allow the system to model potential uncertainty in the sensed environment and thus make more resilient decisions. The simulation-based testing methodology provides a structured approach to evaluate the operation of the target system in a wide variety of operating conditions and thus confirm that the expected resilient behavior has indeed been achieved. This paper provides details on the development of a utility function to support Resilience Contracts and outlines the specific test methods used to evaluate known and unknown operating scenarios.
ISSN:2079-8954
2079-8954
DOI:10.3390/systems7010001