Loading…
Analysis of Two Bradyrhizobium japonicum Strains with Different Symbiotic Matching for Nodulation by Primary Proteomic
The symbiotic matching for nodulation of Bradyrhizobium japonicum strains is a synergy of multi-proteins and plays a key role in symbiotic nitrogen fixation in nature. Studies on mechanism of symbiotic matching are significant in both theory and practice. In this paper, B. japonicum USDA110-A with h...
Saved in:
Published in: | Journal of Integrative Agriculture 2012-08, Vol.11 (8), p.1377-1383 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The symbiotic matching for nodulation of Bradyrhizobium japonicum strains is a synergy of multi-proteins and plays a key role in symbiotic nitrogen fixation in nature. Studies on mechanism of symbiotic matching are significant in both theory and practice. In this paper, B. japonicum USDA110-A with high symbiotic matching with high-oil content soybean cultivar Suinong 20 and B. japonicum 2178 with low symbiotic matching were selected for proteomic to reveal mechanism of different symbiotic nodulation. The results showed that the amount and categories of proteins identified in this test were different when the two strains were treated by symbiotic nodulation. There were 10 up-regulated proteins and 5 down-regulated proteins with significant difference for B. japonicum USDA110-A. Proteins associated with nodulation and metabolism of energy and material, which were propitious to symbiotic nodulation, were all up-regulated, such as PHDPS synthase, metal-dependent phosphohydrolase, glycosyl transferase family. In contrast, only 5 up-regulated and 7 down-regulated differential proteins were detected in B. japonicum 2178. Molecular chaperones and defensive proteins, which influence the folding of nascent polypeptide chains and the active of azotase were down-regulated. To a certain extent, the different responses of B. japonicum to daidzein were one of the most important reasons that cause varieties in symbiotic matching ability. |
---|---|
ISSN: | 2095-3119 2352-3425 |
DOI: | 10.1016/S2095-3119(12)60136-1 |