Loading…

Experimental investigations of electrodeposited Zn–Ni, Zn–Co, and Ni–Cr–Co–based novel coatings on AA7075 substrate to ameliorate the mechanical, abrasion, morphological, and corrosion properties for automotive applications

The aluminum (Al) alloy AA7075 is widely used in various industries due to its high strength-to-weight ratio, which is comparable and replaceable to steel in many applications. However, it has poor resistance to wear and corrosion compared to other Al alloys. The conventional pressure die coating wi...

Full description

Saved in:
Bibliographic Details
Published in:Reviews on advanced materials science 2023-07, Vol.62 (1), p.pp. 5775-5799
Main Authors: Sundaramali, Govindaswamy, Aiyasamy, Jeeva P., Karthikeyan, Sambantham, Kandavel, Thanjavur K., Arulmurugan, Balasubramanian, Rajkumar, Sivanraju, Sharma, Shubham, Li, Changhe, Dwivedi, Shashi Prakash, Kumar, Abhinav, Singh, Rajesh, Eldin, Sayed M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The aluminum (Al) alloy AA7075 is widely used in various industries due to its high strength-to-weight ratio, which is comparable and replaceable to steel in many applications. However, it has poor resistance to wear and corrosion compared to other Al alloys. The conventional pressure die coating with Cr and cadmium has led to premature failure while the load is applied. It is indeed to develop a novel coating method to improve the mechanical, wear, and corrosion properties of AA7075 Al alloy. In the present investigation, the binary and ternary metals such as zinc–nickel (Zn–Ni), zinc–cobalt (Zn–Co), and nickel–chromium–cobalt (Ni–Cr–Co) are electroplated on the substrate material (AA7075). In order to ensure optimal coating adhesion, the surface of the substrate material was pre-treated with laser surface treatment (LST). The mechanical and corrosion studies have been carried out on the uncoated and coated materials. It is observed from the findings that the ternary coating has higher wear resistance than the binary-coated material. The ternary coating has 64% higher resistance in the non-heat-treated status and 67% higher resistance in the heat-treated condition compared to the uncoated specimens. The tensile strength (MPa) of Ni–Cr–Co on AA7075 pressure die casting (PDC) is higher than the other deposits (582.24 of Ni–Cr–Co > 566.07 of Zn–Co > 560.05 of Zn–Ni > 553.64 of uncoated condition). The presence of a crystalline structure with the high alignment of Co and Ni atoms could significantly improve the corrosion resistance of Ni–Cr–Co coatings on AA 7075 PDC substrates when compared to binary coatings. The scanning electron microscopy (SEM) images, X-ray diffraction (XRD), and X-ray photoelectron spectroscopy findings on the coated materials have been corroborated with the analyses on mechanical and corrosion properties. The XRD analysis of the Zn–Ni binary coating has reported that the diffraction peaks of γ-NiZn (831), γ -Ni Zn (330), and 631 with 2 values 38, 43, and 73° are confirming the presence of Zn–Ni binary deposit on AA7075 PDC substrate. The XRD pattern of Zn–Co-coated material has revealed that the presence of three strong peaks such as Zn (110), Co (111), and CoZn (211) and two feeble peaks such as ε-CoZn (220) and ε-CoZn (301) are clearly visible. The XRD pattern of Ni–Cr–Co ternary coating has exhibited that the Ni–Cr–Co ternary deposit is a solid solution with a body-centered cubic structure due to the formation peaks at lattice plan
ISSN:1605-8127
1605-8127
DOI:10.1515/rams-2022-0324