Loading…
Refinement Types for Logical Frameworks and Their Interpretation as Proof Irrelevance
Refinement types sharpen systems of simple and dependent types by offering expressive means to more precisely classify well-typed terms. We present a system of refinement types for LF in the style of recent formulations where only canonical forms are well-typed. Both the usual LF rules and the rules...
Saved in:
Published in: | Logical methods in computer science 2010-01, Vol.6, Issue 4 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Refinement types sharpen systems of simple and dependent types by offering
expressive means to more precisely classify well-typed terms. We present a
system of refinement types for LF in the style of recent formulations where
only canonical forms are well-typed. Both the usual LF rules and the rules for
type refinements are bidirectional, leading to a straightforward proof of
decidability of typechecking even in the presence of intersection types.
Because we insist on canonical forms, structural rules for subtyping can now be
derived rather than being assumed as primitive. We illustrate the expressive
power of our system with examples and validate its design by demonstrating a
precise correspondence with traditional presentations of subtyping. Proof
irrelevance provides a mechanism for selectively hiding the identities of terms
in type theories. We show that LF refinement types can be interpreted as
predicates using proof irrelevance, establishing a uniform relationship between
two previously studied concepts in type theory. The interpretation and its
correctness proof are surprisingly complex, lending support to the claim that
refinement types are a fundamental construct rather than just a convenient
surface syntax for certain uses of proof irrelevance. |
---|---|
ISSN: | 1860-5974 1860-5974 |
DOI: | 10.2168/LMCS-6(4:5)2010 |