Loading…
Extracting Citrus-Growing Regions by Multiscale UNet Using Sentinel-2 Satellite Imagery
Citrus is an important commercial crop in many areas. The management and planning of citrus growing can be supported by timely and efficient monitoring of citrus-growing regions. Their complex planting structure and the weather are likely to cause problems for extracting citrus-growing regions from...
Saved in:
Published in: | Remote sensing (Basel, Switzerland) Switzerland), 2024-01, Vol.16 (1), p.36 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Citrus is an important commercial crop in many areas. The management and planning of citrus growing can be supported by timely and efficient monitoring of citrus-growing regions. Their complex planting structure and the weather are likely to cause problems for extracting citrus-growing regions from remote sensing images. To accurately extract citrus-growing regions, deep learning is employed, because it has a strong feature representation ability and can obtain rich semantic information. A novel model for extracting citrus-growing regions by UNet that incorporates an image pyramid structure is proposed on the basis of the Sentinel-2 satellite imagery. A pyramid-structured encoder, a decoder, and multiscale skip connections are the three main components of the model. Additionally, atrous spatial pyramid pooling is used to prevent information loss and improve the ability to learn spatial features. The experimental results show that the proposed model has the best performance, with the precision, the intersection over union, the recall, and the F1-score reaching 88.96%, 73.22%, 80.55%, and 84.54%, respectively. The extracted citrus-growing regions have regular boundaries and complete parcels. Furthermore, the proposed model has greater overall accuracy, kappa, producer accuracy, and user accuracy than the object-oriented random forest algorithm that is widely applied in various fields. Overall, the proposed method shows a better generalization ability, higher robustness, greater accuracy, and less fragmented extraction results. This research can support the rapid and accurate mapping of large-scale citrus-growing regions. |
---|---|
ISSN: | 2072-4292 2072-4292 |
DOI: | 10.3390/rs16010036 |