Loading…
UrOAC: Urban objects in any-light conditions
In the past years, several works on urban object detection from the point of view of a person have been made. These works are intended to provide an enhanced understanding of the environment for blind and visually challenged people. The mentioned approaches mostly rely in deep learning and machine l...
Saved in:
Published in: | Data in brief 2022-06, Vol.42, p.108172-108172, Article 108172 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c432t-7537f152eac3312b1a7c98216d18b0d719a670d004ad16e8af2c83f6d406063c3 |
container_end_page | 108172 |
container_issue | |
container_start_page | 108172 |
container_title | Data in brief |
container_volume | 42 |
creator | Gomez-Donoso, Francisco Moreno-Martinez, Marcos Cazorla, Miguel |
description | In the past years, several works on urban object detection from the point of view of a person have been made. These works are intended to provide an enhanced understanding of the environment for blind and visually challenged people. The mentioned approaches mostly rely in deep learning and machine learning methods. Nonetheless, these approaches only work with direct and bright light, namely, they will only perform correctly on daylight conditions. This is because deep learning algorithms require large amounts of data and the currently available datasets do not address this matter.
In this work, we propose UrOAC, a dataset of urban objects captured in a range of different lightning conditions, from bright daylight to low and poor night-time lighting conditions. In the latter, the objects are only lit by low ambient light, street lamps and headlights of passing-by vehicles. The dataset depicts the following objects: pedestrian crosswalks, green traffic lights and red traffic lights. The annotations include the category and the bounding-box of each object.
This dataset could be used for improve the performance at night-time and under low-light conditions of any vision-based method that involves urban objects. For instance, guidance and object detection devices for the visually challenged or self-driving and intelligent vehicles. |
doi_str_mv | 10.1016/j.dib.2022.108172 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_c4b40844ecae48ed87d5432a214d1398</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2352340922003766</els_id><doaj_id>oai_doaj_org_article_c4b40844ecae48ed87d5432a214d1398</doaj_id><sourcerecordid>2660102188</sourcerecordid><originalsourceid>FETCH-LOGICAL-c432t-7537f152eac3312b1a7c98216d18b0d719a670d004ad16e8af2c83f6d406063c3</originalsourceid><addsrcrecordid>eNqNkU1r3DAQhk1paUKaH9BL8DGHejujL8spFMLSj0Agl-5ZyJK8kfFKieQN5N9XW6chuZReJM3onVejearqI8IKAcXncWV9vyJASIkltuRNdUwoJw1l0L19cT6qTnMeAQA5K0n-vjoqKwLh3XH1aZNuLtcX9Sb1OtSxH52Zc-1DrcNjM_nt7VybGKyffQz5Q_Vu0FN2p0_7SbX5_u3X-mdzffPjan153RhGydy0nLYDcuK0oRRJj7o1nSQoLMoebIudFi1YAKYtCif1QIykg7AMBAhq6El1tfjaqEd1l_xOp0cVtVd_EjFtlU6zN5NThvUMJGPOaMeks7K1vDShCTKLtJPF6-vidbfvd84aF-akp1emr2-Cv1Xb-KA64JILLAbnTwYp3u9dntXOZ-OmSQcX91kRIQqP8h75HymUuaM8tIWL1KSYc3LDc0cI6sBXjarwVQe-auFbas5efuW54i_NIviyCFyB8-BdUtl4F4yzPhWuZXr-H_a_AZeIsik</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2660102188</pqid></control><display><type>article</type><title>UrOAC: Urban objects in any-light conditions</title><source>Elsevier ScienceDirect Journals</source><source>PubMed Central</source><creator>Gomez-Donoso, Francisco ; Moreno-Martinez, Marcos ; Cazorla, Miguel</creator><creatorcontrib>Gomez-Donoso, Francisco ; Moreno-Martinez, Marcos ; Cazorla, Miguel</creatorcontrib><description>In the past years, several works on urban object detection from the point of view of a person have been made. These works are intended to provide an enhanced understanding of the environment for blind and visually challenged people. The mentioned approaches mostly rely in deep learning and machine learning methods. Nonetheless, these approaches only work with direct and bright light, namely, they will only perform correctly on daylight conditions. This is because deep learning algorithms require large amounts of data and the currently available datasets do not address this matter.
In this work, we propose UrOAC, a dataset of urban objects captured in a range of different lightning conditions, from bright daylight to low and poor night-time lighting conditions. In the latter, the objects are only lit by low ambient light, street lamps and headlights of passing-by vehicles. The dataset depicts the following objects: pedestrian crosswalks, green traffic lights and red traffic lights. The annotations include the category and the bounding-box of each object.
This dataset could be used for improve the performance at night-time and under low-light conditions of any vision-based method that involves urban objects. For instance, guidance and object detection devices for the visually challenged or self-driving and intelligent vehicles.</description><identifier>ISSN: 2352-3409</identifier><identifier>EISSN: 2352-3409</identifier><identifier>DOI: 10.1016/j.dib.2022.108172</identifier><identifier>PMID: 35510259</identifier><language>eng</language><publisher>Netherlands: Elsevier Inc</publisher><subject>Data ; data collection ; lightning ; Low-light conditions ; Object recognition ; people ; solar radiation ; traffic ; Urban environments</subject><ispartof>Data in brief, 2022-06, Vol.42, p.108172-108172, Article 108172</ispartof><rights>2022</rights><rights>2022 The Author(s). Published by Elsevier Inc.</rights><rights>2022 The Author(s). Published by Elsevier Inc. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c432t-7537f152eac3312b1a7c98216d18b0d719a670d004ad16e8af2c83f6d406063c3</cites><orcidid>0000-0001-6805-3633 ; 0000-0002-7830-2661</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9058561/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S2352340922003766$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35510259$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gomez-Donoso, Francisco</creatorcontrib><creatorcontrib>Moreno-Martinez, Marcos</creatorcontrib><creatorcontrib>Cazorla, Miguel</creatorcontrib><title>UrOAC: Urban objects in any-light conditions</title><title>Data in brief</title><addtitle>Data Brief</addtitle><description>In the past years, several works on urban object detection from the point of view of a person have been made. These works are intended to provide an enhanced understanding of the environment for blind and visually challenged people. The mentioned approaches mostly rely in deep learning and machine learning methods. Nonetheless, these approaches only work with direct and bright light, namely, they will only perform correctly on daylight conditions. This is because deep learning algorithms require large amounts of data and the currently available datasets do not address this matter.
In this work, we propose UrOAC, a dataset of urban objects captured in a range of different lightning conditions, from bright daylight to low and poor night-time lighting conditions. In the latter, the objects are only lit by low ambient light, street lamps and headlights of passing-by vehicles. The dataset depicts the following objects: pedestrian crosswalks, green traffic lights and red traffic lights. The annotations include the category and the bounding-box of each object.
This dataset could be used for improve the performance at night-time and under low-light conditions of any vision-based method that involves urban objects. For instance, guidance and object detection devices for the visually challenged or self-driving and intelligent vehicles.</description><subject>Data</subject><subject>data collection</subject><subject>lightning</subject><subject>Low-light conditions</subject><subject>Object recognition</subject><subject>people</subject><subject>solar radiation</subject><subject>traffic</subject><subject>Urban environments</subject><issn>2352-3409</issn><issn>2352-3409</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNqNkU1r3DAQhk1paUKaH9BL8DGHejujL8spFMLSj0Agl-5ZyJK8kfFKieQN5N9XW6chuZReJM3onVejearqI8IKAcXncWV9vyJASIkltuRNdUwoJw1l0L19cT6qTnMeAQA5K0n-vjoqKwLh3XH1aZNuLtcX9Sb1OtSxH52Zc-1DrcNjM_nt7VybGKyffQz5Q_Vu0FN2p0_7SbX5_u3X-mdzffPjan153RhGydy0nLYDcuK0oRRJj7o1nSQoLMoebIudFi1YAKYtCif1QIykg7AMBAhq6El1tfjaqEd1l_xOp0cVtVd_EjFtlU6zN5NThvUMJGPOaMeks7K1vDShCTKLtJPF6-vidbfvd84aF-akp1emr2-Cv1Xb-KA64JILLAbnTwYp3u9dntXOZ-OmSQcX91kRIQqP8h75HymUuaM8tIWL1KSYc3LDc0cI6sBXjarwVQe-auFbas5efuW54i_NIviyCFyB8-BdUtl4F4yzPhWuZXr-H_a_AZeIsik</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>Gomez-Donoso, Francisco</creator><creator>Moreno-Martinez, Marcos</creator><creator>Cazorla, Miguel</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-6805-3633</orcidid><orcidid>https://orcid.org/0000-0002-7830-2661</orcidid></search><sort><creationdate>20220601</creationdate><title>UrOAC: Urban objects in any-light conditions</title><author>Gomez-Donoso, Francisco ; Moreno-Martinez, Marcos ; Cazorla, Miguel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c432t-7537f152eac3312b1a7c98216d18b0d719a670d004ad16e8af2c83f6d406063c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Data</topic><topic>data collection</topic><topic>lightning</topic><topic>Low-light conditions</topic><topic>Object recognition</topic><topic>people</topic><topic>solar radiation</topic><topic>traffic</topic><topic>Urban environments</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gomez-Donoso, Francisco</creatorcontrib><creatorcontrib>Moreno-Martinez, Marcos</creatorcontrib><creatorcontrib>Cazorla, Miguel</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Data in brief</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gomez-Donoso, Francisco</au><au>Moreno-Martinez, Marcos</au><au>Cazorla, Miguel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>UrOAC: Urban objects in any-light conditions</atitle><jtitle>Data in brief</jtitle><addtitle>Data Brief</addtitle><date>2022-06-01</date><risdate>2022</risdate><volume>42</volume><spage>108172</spage><epage>108172</epage><pages>108172-108172</pages><artnum>108172</artnum><issn>2352-3409</issn><eissn>2352-3409</eissn><abstract>In the past years, several works on urban object detection from the point of view of a person have been made. These works are intended to provide an enhanced understanding of the environment for blind and visually challenged people. The mentioned approaches mostly rely in deep learning and machine learning methods. Nonetheless, these approaches only work with direct and bright light, namely, they will only perform correctly on daylight conditions. This is because deep learning algorithms require large amounts of data and the currently available datasets do not address this matter.
In this work, we propose UrOAC, a dataset of urban objects captured in a range of different lightning conditions, from bright daylight to low and poor night-time lighting conditions. In the latter, the objects are only lit by low ambient light, street lamps and headlights of passing-by vehicles. The dataset depicts the following objects: pedestrian crosswalks, green traffic lights and red traffic lights. The annotations include the category and the bounding-box of each object.
This dataset could be used for improve the performance at night-time and under low-light conditions of any vision-based method that involves urban objects. For instance, guidance and object detection devices for the visually challenged or self-driving and intelligent vehicles.</abstract><cop>Netherlands</cop><pub>Elsevier Inc</pub><pmid>35510259</pmid><doi>10.1016/j.dib.2022.108172</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-6805-3633</orcidid><orcidid>https://orcid.org/0000-0002-7830-2661</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2352-3409 |
ispartof | Data in brief, 2022-06, Vol.42, p.108172-108172, Article 108172 |
issn | 2352-3409 2352-3409 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_c4b40844ecae48ed87d5432a214d1398 |
source | Elsevier ScienceDirect Journals; PubMed Central |
subjects | Data data collection lightning Low-light conditions Object recognition people solar radiation traffic Urban environments |
title | UrOAC: Urban objects in any-light conditions |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-03-06T12%3A05%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=UrOAC:%20Urban%20objects%20in%20any-light%20conditions&rft.jtitle=Data%20in%20brief&rft.au=Gomez-Donoso,%20Francisco&rft.date=2022-06-01&rft.volume=42&rft.spage=108172&rft.epage=108172&rft.pages=108172-108172&rft.artnum=108172&rft.issn=2352-3409&rft.eissn=2352-3409&rft_id=info:doi/10.1016/j.dib.2022.108172&rft_dat=%3Cproquest_doaj_%3E2660102188%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c432t-7537f152eac3312b1a7c98216d18b0d719a670d004ad16e8af2c83f6d406063c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2660102188&rft_id=info:pmid/35510259&rfr_iscdi=true |