Loading…
Quad-generation of combined cooling, heating, power, and hydrogen in a dual-loop chemical looping process: Process simulation and thermodynamic evaluation
A new conceptual layout of transforming distributed co-generation plants into quad-generation plants, which combines the generation of hydrogen, cooling, heating, and power, is derived and analyzed. Two chemical looping techniques are developed in this methane-based quad-generation system, namely, c...
Saved in:
Published in: | AIP advances 2020-08, Vol.10 (8), p.085223-085223-15 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A new conceptual layout of transforming distributed co-generation plants into quad-generation plants, which combines the generation of hydrogen, cooling, heating, and power, is derived and analyzed. Two chemical looping techniques are developed in this methane-based quad-generation system, namely, calcium looping CO2 absorption and nickel-based chemical looping combustion (CLC). The objective of the present study is to produce hydrogen as the main product with both high purity and high flux through CLC thermally coupled with sorption-enhanced steam methane reforming (CLC–SESMR) and simultaneously to integrate combined cooling, heating, and power production as by-products through the combined cycle. The implementation of CLC integrated with the SESMR system is designed to fulfill the heat requirements of the reformer and calciner and provide straightforward carbon capture at a relatively low energy penalty. The efforts of four prime parameters, including calcium oxide-to-methane ratio, steam-to-methane ratio, reforming pressure, and reforming temperature, seem to exert significant impact on the properties of the regarded process. Therefore, detailed studies related to these variations have been examined. Meanwhile, the thermodynamic performance of this suggested process, including system efficiencies and the fuel energy saving ratio (FESR), is evaluated under design conditions and reaction parameters. In parallel, the exergy destruction analysis of the whole process is also under discussion. As a result, the total energy and exergy efficiencies as well as FESR are calculated to be 83.91%, 74.05%, and 21.27% in summer and 83.17%, 74.42%, and 21.36% in winter, respectively. |
---|---|
ISSN: | 2158-3226 2158-3226 |
DOI: | 10.1063/5.0010301 |