Loading…

Geometric entanglement in the Laughlin wave function

We study numerically the geometric entanglement in the Laughlin wave function, which is of great importance in condensed matter physics. The Slater determinant having the largest overlap with the Laughlin wave function is constructed by an iterative algorithm. The logarithm of the overlap, which is...

Full description

Saved in:
Bibliographic Details
Published in:New journal of physics 2017-08, Vol.19 (8), p.83019
Main Authors: Zhang, Jiang-Min, Liu, Yu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We study numerically the geometric entanglement in the Laughlin wave function, which is of great importance in condensed matter physics. The Slater determinant having the largest overlap with the Laughlin wave function is constructed by an iterative algorithm. The logarithm of the overlap, which is a geometric quantity, is then taken as a geometric measure of entanglement. It is found that the geometric entanglement is a linear function of the number of electrons to a good extent. This is especially the case for the lowest Laughlin wave function, namely the one with filling factor of 1/3. Surprisingly, the linear behavior extends well down to the smallest possible value of the electron number, namely, N = 2. The constant term does not agree with the expected topological entropy. In view of previous works, our result indicates that the relation between geometric entanglement and topological entropy is very subtle.
ISSN:1367-2630
1367-2630
DOI:10.1088/1367-2630/aa7e72