Loading…

Geometric entanglement in the Laughlin wave function

We study numerically the geometric entanglement in the Laughlin wave function, which is of great importance in condensed matter physics. The Slater determinant having the largest overlap with the Laughlin wave function is constructed by an iterative algorithm. The logarithm of the overlap, which is...

Full description

Saved in:
Bibliographic Details
Published in:New journal of physics 2017-08, Vol.19 (8), p.83019
Main Authors: Zhang, Jiang-Min, Liu, Yu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c448t-3952edb39c8cced82cce2004ff54755634444aa6653e20d6acd7c343402b14573
cites cdi_FETCH-LOGICAL-c448t-3952edb39c8cced82cce2004ff54755634444aa6653e20d6acd7c343402b14573
container_end_page
container_issue 8
container_start_page 83019
container_title New journal of physics
container_volume 19
creator Zhang, Jiang-Min
Liu, Yu
description We study numerically the geometric entanglement in the Laughlin wave function, which is of great importance in condensed matter physics. The Slater determinant having the largest overlap with the Laughlin wave function is constructed by an iterative algorithm. The logarithm of the overlap, which is a geometric quantity, is then taken as a geometric measure of entanglement. It is found that the geometric entanglement is a linear function of the number of electrons to a good extent. This is especially the case for the lowest Laughlin wave function, namely the one with filling factor of 1/3. Surprisingly, the linear behavior extends well down to the smallest possible value of the electron number, namely, N = 2. The constant term does not agree with the expected topological entropy. In view of previous works, our result indicates that the relation between geometric entanglement and topological entropy is very subtle.
doi_str_mv 10.1088/1367-2630/aa7e72
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_c5b347d4a0e645f38cf5b00ff436dc48</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_c5b347d4a0e645f38cf5b00ff436dc48</doaj_id><sourcerecordid>2312604691</sourcerecordid><originalsourceid>FETCH-LOGICAL-c448t-3952edb39c8cced82cce2004ff54755634444aa6653e20d6acd7c343402b14573</originalsourceid><addsrcrecordid>eNp1kD1PwzAYhC0EEqWwM0ZiYCH09WecEVVQKlVigdlyHLtN1MbBSUD8e1yCCgN4sM-nex9bh9AlhlsMUs4wFVlKBIWZ1pnNyBGaHKzjX_oUnXVdDYCxJGSC2ML6ne1DZRLb9LpZb-0uiqRqkn5jk5Ue1pttvLzrN5u4oTF95ZtzdOL0trMX3-cUvTzcP88f09XTYjm_W6WGMdmnNOfElgXNjTTGlpLEnQAw5zjLOBeUxaW1EJxGvxTalJmhjDIgBWY8o1O0HLml17VqQ7XT4UN5Xakvw4e10qGvzNYqwwvKspJpsIJxR6VxvABwjlFRGiYj62pktcG_DrbrVe2H0MTvK0IxEcBEjmMKxpQJvuuCdYdXMah9z2pfpNoXqcae48j1OFL59ofZ1K3CuZIKJIUo2tLF5M0fyX_Bn3zYib8</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2312604691</pqid></control><display><type>article</type><title>Geometric entanglement in the Laughlin wave function</title><source>Publicly Available Content (ProQuest)</source><creator>Zhang, Jiang-Min ; Liu, Yu</creator><creatorcontrib>Zhang, Jiang-Min ; Liu, Yu</creatorcontrib><description>We study numerically the geometric entanglement in the Laughlin wave function, which is of great importance in condensed matter physics. The Slater determinant having the largest overlap with the Laughlin wave function is constructed by an iterative algorithm. The logarithm of the overlap, which is a geometric quantity, is then taken as a geometric measure of entanglement. It is found that the geometric entanglement is a linear function of the number of electrons to a good extent. This is especially the case for the lowest Laughlin wave function, namely the one with filling factor of 1/3. Surprisingly, the linear behavior extends well down to the smallest possible value of the electron number, namely, N = 2. The constant term does not agree with the expected topological entropy. In view of previous works, our result indicates that the relation between geometric entanglement and topological entropy is very subtle.</description><identifier>ISSN: 1367-2630</identifier><identifier>EISSN: 1367-2630</identifier><identifier>DOI: 10.1088/1367-2630/aa7e72</identifier><identifier>CODEN: NJOPFM</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>03.67.Mn ; Condensed matter physics ; Electrons ; Entanglement ; Entropy ; fractional quantum Hall effect ; geometric measure of entanglement ; Helium ; Iterative algorithms ; Iterative methods ; Laughlin wave function ; Linear functions ; Physics ; topological entropy ; topological order ; Topology ; Wave functions</subject><ispartof>New journal of physics, 2017-08, Vol.19 (8), p.83019</ispartof><rights>2017 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft</rights><rights>2017. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c448t-3952edb39c8cced82cce2004ff54755634444aa6653e20d6acd7c343402b14573</citedby><cites>FETCH-LOGICAL-c448t-3952edb39c8cced82cce2004ff54755634444aa6653e20d6acd7c343402b14573</cites><orcidid>0000-0002-4003-5684 ; 0000-0001-9777-7956</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2312604691?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Zhang, Jiang-Min</creatorcontrib><creatorcontrib>Liu, Yu</creatorcontrib><title>Geometric entanglement in the Laughlin wave function</title><title>New journal of physics</title><addtitle>NJP</addtitle><addtitle>New J. Phys</addtitle><description>We study numerically the geometric entanglement in the Laughlin wave function, which is of great importance in condensed matter physics. The Slater determinant having the largest overlap with the Laughlin wave function is constructed by an iterative algorithm. The logarithm of the overlap, which is a geometric quantity, is then taken as a geometric measure of entanglement. It is found that the geometric entanglement is a linear function of the number of electrons to a good extent. This is especially the case for the lowest Laughlin wave function, namely the one with filling factor of 1/3. Surprisingly, the linear behavior extends well down to the smallest possible value of the electron number, namely, N = 2. The constant term does not agree with the expected topological entropy. In view of previous works, our result indicates that the relation between geometric entanglement and topological entropy is very subtle.</description><subject>03.67.Mn</subject><subject>Condensed matter physics</subject><subject>Electrons</subject><subject>Entanglement</subject><subject>Entropy</subject><subject>fractional quantum Hall effect</subject><subject>geometric measure of entanglement</subject><subject>Helium</subject><subject>Iterative algorithms</subject><subject>Iterative methods</subject><subject>Laughlin wave function</subject><subject>Linear functions</subject><subject>Physics</subject><subject>topological entropy</subject><subject>topological order</subject><subject>Topology</subject><subject>Wave functions</subject><issn>1367-2630</issn><issn>1367-2630</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp1kD1PwzAYhC0EEqWwM0ZiYCH09WecEVVQKlVigdlyHLtN1MbBSUD8e1yCCgN4sM-nex9bh9AlhlsMUs4wFVlKBIWZ1pnNyBGaHKzjX_oUnXVdDYCxJGSC2ML6ne1DZRLb9LpZb-0uiqRqkn5jk5Ue1pttvLzrN5u4oTF95ZtzdOL0trMX3-cUvTzcP88f09XTYjm_W6WGMdmnNOfElgXNjTTGlpLEnQAw5zjLOBeUxaW1EJxGvxTalJmhjDIgBWY8o1O0HLml17VqQ7XT4UN5Xakvw4e10qGvzNYqwwvKspJpsIJxR6VxvABwjlFRGiYj62pktcG_DrbrVe2H0MTvK0IxEcBEjmMKxpQJvuuCdYdXMah9z2pfpNoXqcae48j1OFL59ofZ1K3CuZIKJIUo2tLF5M0fyX_Bn3zYib8</recordid><startdate>20170821</startdate><enddate>20170821</enddate><creator>Zhang, Jiang-Min</creator><creator>Liu, Yu</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>L7M</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-4003-5684</orcidid><orcidid>https://orcid.org/0000-0001-9777-7956</orcidid></search><sort><creationdate>20170821</creationdate><title>Geometric entanglement in the Laughlin wave function</title><author>Zhang, Jiang-Min ; Liu, Yu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c448t-3952edb39c8cced82cce2004ff54755634444aa6653e20d6acd7c343402b14573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>03.67.Mn</topic><topic>Condensed matter physics</topic><topic>Electrons</topic><topic>Entanglement</topic><topic>Entropy</topic><topic>fractional quantum Hall effect</topic><topic>geometric measure of entanglement</topic><topic>Helium</topic><topic>Iterative algorithms</topic><topic>Iterative methods</topic><topic>Laughlin wave function</topic><topic>Linear functions</topic><topic>Physics</topic><topic>topological entropy</topic><topic>topological order</topic><topic>Topology</topic><topic>Wave functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Jiang-Min</creatorcontrib><creatorcontrib>Liu, Yu</creatorcontrib><collection>Open Access: IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>New journal of physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Jiang-Min</au><au>Liu, Yu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Geometric entanglement in the Laughlin wave function</atitle><jtitle>New journal of physics</jtitle><stitle>NJP</stitle><addtitle>New J. Phys</addtitle><date>2017-08-21</date><risdate>2017</risdate><volume>19</volume><issue>8</issue><spage>83019</spage><pages>83019-</pages><issn>1367-2630</issn><eissn>1367-2630</eissn><coden>NJOPFM</coden><abstract>We study numerically the geometric entanglement in the Laughlin wave function, which is of great importance in condensed matter physics. The Slater determinant having the largest overlap with the Laughlin wave function is constructed by an iterative algorithm. The logarithm of the overlap, which is a geometric quantity, is then taken as a geometric measure of entanglement. It is found that the geometric entanglement is a linear function of the number of electrons to a good extent. This is especially the case for the lowest Laughlin wave function, namely the one with filling factor of 1/3. Surprisingly, the linear behavior extends well down to the smallest possible value of the electron number, namely, N = 2. The constant term does not agree with the expected topological entropy. In view of previous works, our result indicates that the relation between geometric entanglement and topological entropy is very subtle.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1367-2630/aa7e72</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-4003-5684</orcidid><orcidid>https://orcid.org/0000-0001-9777-7956</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1367-2630
ispartof New journal of physics, 2017-08, Vol.19 (8), p.83019
issn 1367-2630
1367-2630
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_c5b347d4a0e645f38cf5b00ff436dc48
source Publicly Available Content (ProQuest)
subjects 03.67.Mn
Condensed matter physics
Electrons
Entanglement
Entropy
fractional quantum Hall effect
geometric measure of entanglement
Helium
Iterative algorithms
Iterative methods
Laughlin wave function
Linear functions
Physics
topological entropy
topological order
Topology
Wave functions
title Geometric entanglement in the Laughlin wave function
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T03%3A21%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Geometric%20entanglement%20in%20the%20Laughlin%20wave%20function&rft.jtitle=New%20journal%20of%20physics&rft.au=Zhang,%20Jiang-Min&rft.date=2017-08-21&rft.volume=19&rft.issue=8&rft.spage=83019&rft.pages=83019-&rft.issn=1367-2630&rft.eissn=1367-2630&rft.coden=NJOPFM&rft_id=info:doi/10.1088/1367-2630/aa7e72&rft_dat=%3Cproquest_doaj_%3E2312604691%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c448t-3952edb39c8cced82cce2004ff54755634444aa6653e20d6acd7c343402b14573%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2312604691&rft_id=info:pmid/&rfr_iscdi=true