Loading…
Geometric entanglement in the Laughlin wave function
We study numerically the geometric entanglement in the Laughlin wave function, which is of great importance in condensed matter physics. The Slater determinant having the largest overlap with the Laughlin wave function is constructed by an iterative algorithm. The logarithm of the overlap, which is...
Saved in:
Published in: | New journal of physics 2017-08, Vol.19 (8), p.83019 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c448t-3952edb39c8cced82cce2004ff54755634444aa6653e20d6acd7c343402b14573 |
---|---|
cites | cdi_FETCH-LOGICAL-c448t-3952edb39c8cced82cce2004ff54755634444aa6653e20d6acd7c343402b14573 |
container_end_page | |
container_issue | 8 |
container_start_page | 83019 |
container_title | New journal of physics |
container_volume | 19 |
creator | Zhang, Jiang-Min Liu, Yu |
description | We study numerically the geometric entanglement in the Laughlin wave function, which is of great importance in condensed matter physics. The Slater determinant having the largest overlap with the Laughlin wave function is constructed by an iterative algorithm. The logarithm of the overlap, which is a geometric quantity, is then taken as a geometric measure of entanglement. It is found that the geometric entanglement is a linear function of the number of electrons to a good extent. This is especially the case for the lowest Laughlin wave function, namely the one with filling factor of 1/3. Surprisingly, the linear behavior extends well down to the smallest possible value of the electron number, namely, N = 2. The constant term does not agree with the expected topological entropy. In view of previous works, our result indicates that the relation between geometric entanglement and topological entropy is very subtle. |
doi_str_mv | 10.1088/1367-2630/aa7e72 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_c5b347d4a0e645f38cf5b00ff436dc48</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_c5b347d4a0e645f38cf5b00ff436dc48</doaj_id><sourcerecordid>2312604691</sourcerecordid><originalsourceid>FETCH-LOGICAL-c448t-3952edb39c8cced82cce2004ff54755634444aa6653e20d6acd7c343402b14573</originalsourceid><addsrcrecordid>eNp1kD1PwzAYhC0EEqWwM0ZiYCH09WecEVVQKlVigdlyHLtN1MbBSUD8e1yCCgN4sM-nex9bh9AlhlsMUs4wFVlKBIWZ1pnNyBGaHKzjX_oUnXVdDYCxJGSC2ML6ne1DZRLb9LpZb-0uiqRqkn5jk5Ue1pttvLzrN5u4oTF95ZtzdOL0trMX3-cUvTzcP88f09XTYjm_W6WGMdmnNOfElgXNjTTGlpLEnQAw5zjLOBeUxaW1EJxGvxTalJmhjDIgBWY8o1O0HLml17VqQ7XT4UN5Xakvw4e10qGvzNYqwwvKspJpsIJxR6VxvABwjlFRGiYj62pktcG_DrbrVe2H0MTvK0IxEcBEjmMKxpQJvuuCdYdXMah9z2pfpNoXqcae48j1OFL59ofZ1K3CuZIKJIUo2tLF5M0fyX_Bn3zYib8</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2312604691</pqid></control><display><type>article</type><title>Geometric entanglement in the Laughlin wave function</title><source>Publicly Available Content (ProQuest)</source><creator>Zhang, Jiang-Min ; Liu, Yu</creator><creatorcontrib>Zhang, Jiang-Min ; Liu, Yu</creatorcontrib><description>We study numerically the geometric entanglement in the Laughlin wave function, which is of great importance in condensed matter physics. The Slater determinant having the largest overlap with the Laughlin wave function is constructed by an iterative algorithm. The logarithm of the overlap, which is a geometric quantity, is then taken as a geometric measure of entanglement. It is found that the geometric entanglement is a linear function of the number of electrons to a good extent. This is especially the case for the lowest Laughlin wave function, namely the one with filling factor of 1/3. Surprisingly, the linear behavior extends well down to the smallest possible value of the electron number, namely, N = 2. The constant term does not agree with the expected topological entropy. In view of previous works, our result indicates that the relation between geometric entanglement and topological entropy is very subtle.</description><identifier>ISSN: 1367-2630</identifier><identifier>EISSN: 1367-2630</identifier><identifier>DOI: 10.1088/1367-2630/aa7e72</identifier><identifier>CODEN: NJOPFM</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>03.67.Mn ; Condensed matter physics ; Electrons ; Entanglement ; Entropy ; fractional quantum Hall effect ; geometric measure of entanglement ; Helium ; Iterative algorithms ; Iterative methods ; Laughlin wave function ; Linear functions ; Physics ; topological entropy ; topological order ; Topology ; Wave functions</subject><ispartof>New journal of physics, 2017-08, Vol.19 (8), p.83019</ispartof><rights>2017 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft</rights><rights>2017. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c448t-3952edb39c8cced82cce2004ff54755634444aa6653e20d6acd7c343402b14573</citedby><cites>FETCH-LOGICAL-c448t-3952edb39c8cced82cce2004ff54755634444aa6653e20d6acd7c343402b14573</cites><orcidid>0000-0002-4003-5684 ; 0000-0001-9777-7956</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2312604691?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Zhang, Jiang-Min</creatorcontrib><creatorcontrib>Liu, Yu</creatorcontrib><title>Geometric entanglement in the Laughlin wave function</title><title>New journal of physics</title><addtitle>NJP</addtitle><addtitle>New J. Phys</addtitle><description>We study numerically the geometric entanglement in the Laughlin wave function, which is of great importance in condensed matter physics. The Slater determinant having the largest overlap with the Laughlin wave function is constructed by an iterative algorithm. The logarithm of the overlap, which is a geometric quantity, is then taken as a geometric measure of entanglement. It is found that the geometric entanglement is a linear function of the number of electrons to a good extent. This is especially the case for the lowest Laughlin wave function, namely the one with filling factor of 1/3. Surprisingly, the linear behavior extends well down to the smallest possible value of the electron number, namely, N = 2. The constant term does not agree with the expected topological entropy. In view of previous works, our result indicates that the relation between geometric entanglement and topological entropy is very subtle.</description><subject>03.67.Mn</subject><subject>Condensed matter physics</subject><subject>Electrons</subject><subject>Entanglement</subject><subject>Entropy</subject><subject>fractional quantum Hall effect</subject><subject>geometric measure of entanglement</subject><subject>Helium</subject><subject>Iterative algorithms</subject><subject>Iterative methods</subject><subject>Laughlin wave function</subject><subject>Linear functions</subject><subject>Physics</subject><subject>topological entropy</subject><subject>topological order</subject><subject>Topology</subject><subject>Wave functions</subject><issn>1367-2630</issn><issn>1367-2630</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp1kD1PwzAYhC0EEqWwM0ZiYCH09WecEVVQKlVigdlyHLtN1MbBSUD8e1yCCgN4sM-nex9bh9AlhlsMUs4wFVlKBIWZ1pnNyBGaHKzjX_oUnXVdDYCxJGSC2ML6ne1DZRLb9LpZb-0uiqRqkn5jk5Ue1pttvLzrN5u4oTF95ZtzdOL0trMX3-cUvTzcP88f09XTYjm_W6WGMdmnNOfElgXNjTTGlpLEnQAw5zjLOBeUxaW1EJxGvxTalJmhjDIgBWY8o1O0HLml17VqQ7XT4UN5Xakvw4e10qGvzNYqwwvKspJpsIJxR6VxvABwjlFRGiYj62pktcG_DrbrVe2H0MTvK0IxEcBEjmMKxpQJvuuCdYdXMah9z2pfpNoXqcae48j1OFL59ofZ1K3CuZIKJIUo2tLF5M0fyX_Bn3zYib8</recordid><startdate>20170821</startdate><enddate>20170821</enddate><creator>Zhang, Jiang-Min</creator><creator>Liu, Yu</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>L7M</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-4003-5684</orcidid><orcidid>https://orcid.org/0000-0001-9777-7956</orcidid></search><sort><creationdate>20170821</creationdate><title>Geometric entanglement in the Laughlin wave function</title><author>Zhang, Jiang-Min ; Liu, Yu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c448t-3952edb39c8cced82cce2004ff54755634444aa6653e20d6acd7c343402b14573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>03.67.Mn</topic><topic>Condensed matter physics</topic><topic>Electrons</topic><topic>Entanglement</topic><topic>Entropy</topic><topic>fractional quantum Hall effect</topic><topic>geometric measure of entanglement</topic><topic>Helium</topic><topic>Iterative algorithms</topic><topic>Iterative methods</topic><topic>Laughlin wave function</topic><topic>Linear functions</topic><topic>Physics</topic><topic>topological entropy</topic><topic>topological order</topic><topic>Topology</topic><topic>Wave functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Jiang-Min</creatorcontrib><creatorcontrib>Liu, Yu</creatorcontrib><collection>Open Access: IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>New journal of physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Jiang-Min</au><au>Liu, Yu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Geometric entanglement in the Laughlin wave function</atitle><jtitle>New journal of physics</jtitle><stitle>NJP</stitle><addtitle>New J. Phys</addtitle><date>2017-08-21</date><risdate>2017</risdate><volume>19</volume><issue>8</issue><spage>83019</spage><pages>83019-</pages><issn>1367-2630</issn><eissn>1367-2630</eissn><coden>NJOPFM</coden><abstract>We study numerically the geometric entanglement in the Laughlin wave function, which is of great importance in condensed matter physics. The Slater determinant having the largest overlap with the Laughlin wave function is constructed by an iterative algorithm. The logarithm of the overlap, which is a geometric quantity, is then taken as a geometric measure of entanglement. It is found that the geometric entanglement is a linear function of the number of electrons to a good extent. This is especially the case for the lowest Laughlin wave function, namely the one with filling factor of 1/3. Surprisingly, the linear behavior extends well down to the smallest possible value of the electron number, namely, N = 2. The constant term does not agree with the expected topological entropy. In view of previous works, our result indicates that the relation between geometric entanglement and topological entropy is very subtle.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1367-2630/aa7e72</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-4003-5684</orcidid><orcidid>https://orcid.org/0000-0001-9777-7956</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1367-2630 |
ispartof | New journal of physics, 2017-08, Vol.19 (8), p.83019 |
issn | 1367-2630 1367-2630 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_c5b347d4a0e645f38cf5b00ff436dc48 |
source | Publicly Available Content (ProQuest) |
subjects | 03.67.Mn Condensed matter physics Electrons Entanglement Entropy fractional quantum Hall effect geometric measure of entanglement Helium Iterative algorithms Iterative methods Laughlin wave function Linear functions Physics topological entropy topological order Topology Wave functions |
title | Geometric entanglement in the Laughlin wave function |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T03%3A21%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Geometric%20entanglement%20in%20the%20Laughlin%20wave%20function&rft.jtitle=New%20journal%20of%20physics&rft.au=Zhang,%20Jiang-Min&rft.date=2017-08-21&rft.volume=19&rft.issue=8&rft.spage=83019&rft.pages=83019-&rft.issn=1367-2630&rft.eissn=1367-2630&rft.coden=NJOPFM&rft_id=info:doi/10.1088/1367-2630/aa7e72&rft_dat=%3Cproquest_doaj_%3E2312604691%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c448t-3952edb39c8cced82cce2004ff54755634444aa6653e20d6acd7c343402b14573%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2312604691&rft_id=info:pmid/&rfr_iscdi=true |