Loading…
Regularity of the lower positive branch for singular elliptic bifurcation problems
We consider the problem $$\displaylines{ -\Delta u=au^{-\alpha}+f(\lambda,\cdot,u) \quad\text{in }\Omega,\cr u=0\quad \text{on }\partial\Omega, \cr u>0 \quad \text{in }\Omega, }$$ where $\Omega$ is a bounded domain in $\mathbb{R}^n$, $\lambda\geq 0$, $0\leq a\in L^{\infty}(\Omega) $, and $0
Saved in:
Published in: | Electronic journal of differential equations 2019-04, Vol.2019 (49), p.1-32 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We consider the problem $$\displaylines{ -\Delta u=au^{-\alpha}+f(\lambda,\cdot,u) \quad\text{in }\Omega,\cr u=0\quad \text{on }\partial\Omega, \cr u>0 \quad \text{in }\Omega, }$$ where $\Omega$ is a bounded domain in $\mathbb{R}^n$, $\lambda\geq 0$, $0\leq a\in L^{\infty}(\Omega) $, and $0 |
---|---|
ISSN: | 1072-6691 |