Loading…

Evaluation of the spatial aspect of building resilience in classrooms equipped with displacement ventilation

Throughout their lifetime, buildings might face unpredictable shocks leading to fast deterioration of comfort levels. The ability of buildings and systems to absorb the shock and bring back the indoor conditions to their designed state is termed as “resilience”. Ventilation and thermal resilience ha...

Full description

Saved in:
Bibliographic Details
Main Authors: Al-Assaad, Douaa, Sengupta, Abantika, Breesch, Hilde
Format: Conference Proceeding
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Throughout their lifetime, buildings might face unpredictable shocks leading to fast deterioration of comfort levels. The ability of buildings and systems to absorb the shock and bring back the indoor conditions to their designed state is termed as “resilience”. Ventilation and thermal resilience have been studied under homogeneous conditions. However, the established airflow indoors and hence resilience is non-homogeneous. In this work, the spatial aspect of ventilation and thermal resilience will be assessed in a classroom equipped with displacement ventilation using 3D CFD modeling. Two sources of pollution were considered in the space: CO 2 and VOCs. To study resilience, the numerical model was simulated until steady state. Subsequently, a power outage shock of 60 min was induced. The temporal and spatial mappings of temperature, and pollutants’ concentration were recorded in the occupied zone at the breathing height of 1.2 m and compared to that at the exhaust. Building resilience was assessed through ppm.hours and degree.hours and compared at both locations. Results showed that resilience is rather a non-homogeneous field that depends on the location of heat sources and pollution sources in the space. However, results showed that any over or under estimations (~20 − 28%) in assessing the thermal or ventilation resilience are negligible when evaluated at either the breathing plane or the exhaust.
ISSN:2267-1242
2555-0403
2267-1242
DOI:10.1051/e3sconf/202236214006