Loading…

A New Approach to Braided T-Categories and Generalized Quantum Yang–Baxter Equations

We introduce and study a large class of coalgebras (possibly (non)coassociative) with group-algebraic structures Hopf (non)coassociative group-algebras. Hopf (non)coassociative group-algebras provide a unifying framework for classical Hopf algebras and Hopf group-algebras and Hopf coquasigroups. We...

Full description

Saved in:
Bibliographic Details
Published in:Mathematics (Basel) 2022-03, Vol.10 (6), p.968
Main Authors: Zhang, Senlin, Wang, Shuanhong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We introduce and study a large class of coalgebras (possibly (non)coassociative) with group-algebraic structures Hopf (non)coassociative group-algebras. Hopf (non)coassociative group-algebras provide a unifying framework for classical Hopf algebras and Hopf group-algebras and Hopf coquasigroups. We introduce and discuss the notion of a quasitriangular Hopf (non)coassociative π-algebra and show some of its prominent properties, e.g., antipode S is bijective. As an application of our theory, we construct a new braided T-category and give a new solution to the generalized quantum Yang–Baxter equation.
ISSN:2227-7390
2227-7390
DOI:10.3390/math10060968