Loading…
A New Approach to Braided T-Categories and Generalized Quantum Yang–Baxter Equations
We introduce and study a large class of coalgebras (possibly (non)coassociative) with group-algebraic structures Hopf (non)coassociative group-algebras. Hopf (non)coassociative group-algebras provide a unifying framework for classical Hopf algebras and Hopf group-algebras and Hopf coquasigroups. We...
Saved in:
Published in: | Mathematics (Basel) 2022-03, Vol.10 (6), p.968 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We introduce and study a large class of coalgebras (possibly (non)coassociative) with group-algebraic structures Hopf (non)coassociative group-algebras. Hopf (non)coassociative group-algebras provide a unifying framework for classical Hopf algebras and Hopf group-algebras and Hopf coquasigroups. We introduce and discuss the notion of a quasitriangular Hopf (non)coassociative π-algebra and show some of its prominent properties, e.g., antipode S is bijective. As an application of our theory, we construct a new braided T-category and give a new solution to the generalized quantum Yang–Baxter equation. |
---|---|
ISSN: | 2227-7390 2227-7390 |
DOI: | 10.3390/math10060968 |