Loading…
A New Approach to Braided T-Categories and Generalized Quantum Yang–Baxter Equations
We introduce and study a large class of coalgebras (possibly (non)coassociative) with group-algebraic structures Hopf (non)coassociative group-algebras. Hopf (non)coassociative group-algebras provide a unifying framework for classical Hopf algebras and Hopf group-algebras and Hopf coquasigroups. We...
Saved in:
Published in: | Mathematics (Basel) 2022-03, Vol.10 (6), p.968 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c297t-767d110cecc26377b4caf459798ea026ca8b4e71e3f889c7202567af28bc3d8e3 |
---|---|
cites | cdi_FETCH-LOGICAL-c297t-767d110cecc26377b4caf459798ea026ca8b4e71e3f889c7202567af28bc3d8e3 |
container_end_page | |
container_issue | 6 |
container_start_page | 968 |
container_title | Mathematics (Basel) |
container_volume | 10 |
creator | Zhang, Senlin Wang, Shuanhong |
description | We introduce and study a large class of coalgebras (possibly (non)coassociative) with group-algebraic structures Hopf (non)coassociative group-algebras. Hopf (non)coassociative group-algebras provide a unifying framework for classical Hopf algebras and Hopf group-algebras and Hopf coquasigroups. We introduce and discuss the notion of a quasitriangular Hopf (non)coassociative π-algebra and show some of its prominent properties, e.g., antipode S is bijective. As an application of our theory, we construct a new braided T-category and give a new solution to the generalized quantum Yang–Baxter equation. |
doi_str_mv | 10.3390/math10060968 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_c8601d01ee404ab4b75e7af8a5021479</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_c8601d01ee404ab4b75e7af8a5021479</doaj_id><sourcerecordid>2642436937</sourcerecordid><originalsourceid>FETCH-LOGICAL-c297t-767d110cecc26377b4caf459798ea026ca8b4e71e3f889c7202567af28bc3d8e3</originalsourceid><addsrcrecordid>eNpNkclKA0EQhgdRUKI3H6DBq6O9pZdjDHEBUQQVPDU1PTVxQjKd9PTgcvIdfEOfxNGIpC5V1P_zVVGVZYeMnghh6ekC0jOjVFGrzFa2xznXue6F7Y16Nzto2xntwzJhpN3LHkfkBl_IaLmMAfwzSYGcRahLLMl9PoaE0xBrbAk0JbnABiPM6_devOugSd2CPEEz_fr4PIPXhJFMVh2kOjTtfrZTwbzFg788yB7OJ_fjy_z69uJqPLrOPbc65VrpkjHq0XuuhNaF9FDJodXWIFCuPJhComYoKmOs15zyodJQcVN4URoUg-xqzS0DzNwy1guIby5A7X4bIU4dxFT7OTpvFGUlZYiSSihkoYfYowwMKWdS2551tGb1p1h12CY3C11s-vUdV5JLoazQvet47fIxtG3E6n8qo-7nEW7zEeIbgxF63Q</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2642436937</pqid></control><display><type>article</type><title>A New Approach to Braided T-Categories and Generalized Quantum Yang–Baxter Equations</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Zhang, Senlin ; Wang, Shuanhong</creator><creatorcontrib>Zhang, Senlin ; Wang, Shuanhong</creatorcontrib><description>We introduce and study a large class of coalgebras (possibly (non)coassociative) with group-algebraic structures Hopf (non)coassociative group-algebras. Hopf (non)coassociative group-algebras provide a unifying framework for classical Hopf algebras and Hopf group-algebras and Hopf coquasigroups. We introduce and discuss the notion of a quasitriangular Hopf (non)coassociative π-algebra and show some of its prominent properties, e.g., antipode S is bijective. As an application of our theory, we construct a new braided T-category and give a new solution to the generalized quantum Yang–Baxter equation.</description><identifier>ISSN: 2227-7390</identifier><identifier>EISSN: 2227-7390</identifier><identifier>DOI: 10.3390/math10060968</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Algebra ; braided T-category ; Braiding ; Hopf (non)coassociative group-algebra ; Quantum field theory ; quantum Yang–Baxter equation ; quasitriangular Hopf (non)coassociative π-algebra</subject><ispartof>Mathematics (Basel), 2022-03, Vol.10 (6), p.968</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c297t-767d110cecc26377b4caf459798ea026ca8b4e71e3f889c7202567af28bc3d8e3</citedby><cites>FETCH-LOGICAL-c297t-767d110cecc26377b4caf459798ea026ca8b4e71e3f889c7202567af28bc3d8e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2642436937/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2642436937?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25731,27901,27902,36989,44566,74869</link.rule.ids></links><search><creatorcontrib>Zhang, Senlin</creatorcontrib><creatorcontrib>Wang, Shuanhong</creatorcontrib><title>A New Approach to Braided T-Categories and Generalized Quantum Yang–Baxter Equations</title><title>Mathematics (Basel)</title><description>We introduce and study a large class of coalgebras (possibly (non)coassociative) with group-algebraic structures Hopf (non)coassociative group-algebras. Hopf (non)coassociative group-algebras provide a unifying framework for classical Hopf algebras and Hopf group-algebras and Hopf coquasigroups. We introduce and discuss the notion of a quasitriangular Hopf (non)coassociative π-algebra and show some of its prominent properties, e.g., antipode S is bijective. As an application of our theory, we construct a new braided T-category and give a new solution to the generalized quantum Yang–Baxter equation.</description><subject>Algebra</subject><subject>braided T-category</subject><subject>Braiding</subject><subject>Hopf (non)coassociative group-algebra</subject><subject>Quantum field theory</subject><subject>quantum Yang–Baxter equation</subject><subject>quasitriangular Hopf (non)coassociative π-algebra</subject><issn>2227-7390</issn><issn>2227-7390</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNkclKA0EQhgdRUKI3H6DBq6O9pZdjDHEBUQQVPDU1PTVxQjKd9PTgcvIdfEOfxNGIpC5V1P_zVVGVZYeMnghh6ekC0jOjVFGrzFa2xznXue6F7Y16Nzto2xntwzJhpN3LHkfkBl_IaLmMAfwzSYGcRahLLMl9PoaE0xBrbAk0JbnABiPM6_devOugSd2CPEEz_fr4PIPXhJFMVh2kOjTtfrZTwbzFg788yB7OJ_fjy_z69uJqPLrOPbc65VrpkjHq0XuuhNaF9FDJodXWIFCuPJhComYoKmOs15zyodJQcVN4URoUg-xqzS0DzNwy1guIby5A7X4bIU4dxFT7OTpvFGUlZYiSSihkoYfYowwMKWdS2551tGb1p1h12CY3C11s-vUdV5JLoazQvet47fIxtG3E6n8qo-7nEW7zEeIbgxF63Q</recordid><startdate>20220301</startdate><enddate>20220301</enddate><creator>Zhang, Senlin</creator><creator>Wang, Shuanhong</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>DOA</scope></search><sort><creationdate>20220301</creationdate><title>A New Approach to Braided T-Categories and Generalized Quantum Yang–Baxter Equations</title><author>Zhang, Senlin ; Wang, Shuanhong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c297t-767d110cecc26377b4caf459798ea026ca8b4e71e3f889c7202567af28bc3d8e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algebra</topic><topic>braided T-category</topic><topic>Braiding</topic><topic>Hopf (non)coassociative group-algebra</topic><topic>Quantum field theory</topic><topic>quantum Yang–Baxter equation</topic><topic>quasitriangular Hopf (non)coassociative π-algebra</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Senlin</creatorcontrib><creatorcontrib>Wang, Shuanhong</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>ProQuest Engineering Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><collection>Open Access: DOAJ - Directory of Open Access Journals</collection><jtitle>Mathematics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Senlin</au><au>Wang, Shuanhong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A New Approach to Braided T-Categories and Generalized Quantum Yang–Baxter Equations</atitle><jtitle>Mathematics (Basel)</jtitle><date>2022-03-01</date><risdate>2022</risdate><volume>10</volume><issue>6</issue><spage>968</spage><pages>968-</pages><issn>2227-7390</issn><eissn>2227-7390</eissn><abstract>We introduce and study a large class of coalgebras (possibly (non)coassociative) with group-algebraic structures Hopf (non)coassociative group-algebras. Hopf (non)coassociative group-algebras provide a unifying framework for classical Hopf algebras and Hopf group-algebras and Hopf coquasigroups. We introduce and discuss the notion of a quasitriangular Hopf (non)coassociative π-algebra and show some of its prominent properties, e.g., antipode S is bijective. As an application of our theory, we construct a new braided T-category and give a new solution to the generalized quantum Yang–Baxter equation.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/math10060968</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2227-7390 |
ispartof | Mathematics (Basel), 2022-03, Vol.10 (6), p.968 |
issn | 2227-7390 2227-7390 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_c8601d01ee404ab4b75e7af8a5021479 |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3) |
subjects | Algebra braided T-category Braiding Hopf (non)coassociative group-algebra Quantum field theory quantum Yang–Baxter equation quasitriangular Hopf (non)coassociative π-algebra |
title | A New Approach to Braided T-Categories and Generalized Quantum Yang–Baxter Equations |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T13%3A57%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20New%20Approach%20to%20Braided%20T-Categories%20and%20Generalized%20Quantum%20Yang%E2%80%93Baxter%20Equations&rft.jtitle=Mathematics%20(Basel)&rft.au=Zhang,%20Senlin&rft.date=2022-03-01&rft.volume=10&rft.issue=6&rft.spage=968&rft.pages=968-&rft.issn=2227-7390&rft.eissn=2227-7390&rft_id=info:doi/10.3390/math10060968&rft_dat=%3Cproquest_doaj_%3E2642436937%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c297t-767d110cecc26377b4caf459798ea026ca8b4e71e3f889c7202567af28bc3d8e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2642436937&rft_id=info:pmid/&rfr_iscdi=true |