Loading…
Valorisation of Partially Oxidized Tailings in a Cover System to Reclaim an Old Acid Generating Mine Site
The reclamation of acid-generating mine tailings typically involves building cover systems to limit interactions with water or oxygen. The choice of cover materials is critical to ensure long-term performance, and partly determines the environmental footprint of the reclamation strategy. The objecti...
Saved in:
Published in: | Minerals (Basel) 2021-09, Vol.11 (9), p.987 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The reclamation of acid-generating mine tailings typically involves building cover systems to limit interactions with water or oxygen. The choice of cover materials is critical to ensure long-term performance, and partly determines the environmental footprint of the reclamation strategy. The objective of this research was to evaluate if tailings pre-oxidized on-site could be used in cover systems. Column experiments were performed to assess the effectiveness of a cover with capillary barrier effects (CCBE), where the moisture retention layer (MRL) was made of pre-oxidized tailings with little to no remaining sulfides (LS tailings). The columns were submitted to regular wetting and drying cycles, and their hydrological and geochemical behaviour was monitored for 510 days. The LS tailings showed satisfying hydrological properties as an MRL and remained saturated throughout the test. The concentrations of Cu in the drainage decreased by more than two orders of magnitude compared to non-covered tailings. In addition, the pH increased by nearly one unit compared to the control column, and Fe and S concentrations decreased by around 50%. Despite these improvements, the leachate water remained acidic and contaminated, indicating that acid drainage continued to be generated despite a hydrologically efficient CCBE. |
---|---|
ISSN: | 2075-163X 2075-163X |
DOI: | 10.3390/min11090987 |