Loading…
The Square-Zero Basis of Matrix Lie Algebras
A method is presented that allows one to compute the maximum number of functionally-independent invariant functions under the action of a linear algebraic group as long as its Lie algebra admits a basis of square-zero matrices even on a field of positive characteristic. The class of such Lie algebra...
Saved in:
Published in: | Mathematics (Basel) 2020-06, Vol.8 (6), p.1032 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A method is presented that allows one to compute the maximum number of functionally-independent invariant functions under the action of a linear algebraic group as long as its Lie algebra admits a basis of square-zero matrices even on a field of positive characteristic. The class of such Lie algebras is studied in the framework of the classical Lie algebras of arbitrary characteristic. Some examples and applications are also given. |
---|---|
ISSN: | 2227-7390 2227-7390 |
DOI: | 10.3390/math8061032 |