Loading…
Linear Matrix Inequality-Based Robust Model Predictive Speed Control for a Permanent Magnetic Synchronous Motor with a Disturbance Observer
In this paper, a linear matrix inequality (LMI)-based robust model predictive speed control (RMPSC) with a disturbance observer (DOB) is proposed to guarantee stability and control performance against the parameter uncertainty and disturbance of a permanent magnetic synchronous motor (PMSM). All ext...
Saved in:
Published in: | Energies (Basel) 2024-02, Vol.17 (4), p.869 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this paper, a linear matrix inequality (LMI)-based robust model predictive speed control (RMPSC) with a disturbance observer (DOB) is proposed to guarantee stability and control performance against the parameter uncertainty and disturbance of a permanent magnetic synchronous motor (PMSM). All external torques applied to the PMSM are defined as disturbance, estimated by the DOB, and used to construct the RMPSC method. The proposed DOB and RMPSC are determined by a multiple LMI-based optimization approach. Furthermore, parameter uncertainty within a certain range, due to manufacturing errors or aging deterioration, is considered and a systematic tuning method is proposed to obtain the optimal gains. Finally, an offline optimization method is developed that ensures a low computational load to enable real-time processing. Simulation results demonstrate the effectiveness and validity of the proposed control method. |
---|---|
ISSN: | 1996-1073 1996-1073 |
DOI: | 10.3390/en17040869 |