Loading…
LOCAL SET APPROXIMATION: MATTILA–VUORINEN TYPE SETS, REIFENBERG TYPE SETS, AND TANGENT SETS
We investigate the interplay between the local and asymptotic geometry of a set $A\subseteq \mathbb{R}^{n}$ and the geometry of model sets ${\mathcal{S}}\subset {\mathcal{P}}(\mathbb{R}^{n})$, which approximate $A$ locally uniformly on small scales. The framework for local set approximation develope...
Saved in:
Published in: | Forum of mathematics. Sigma 2015-10, Vol.3, Article e24 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We investigate the interplay between the local and asymptotic geometry of a set $A\subseteq \mathbb{R}^{n}$ and the geometry of model sets ${\mathcal{S}}\subset {\mathcal{P}}(\mathbb{R}^{n})$, which approximate $A$ locally uniformly on small scales. The framework for local set approximation developed in this paper unifies and extends ideas of Jones, Mattila and Vuorinen, Reifenberg, and Preiss. We indicate several applications of this framework to variational problems that arise in geometric measure theory and partial differential equations. For instance, we show that the singular part of the support of an $(n-1)$-dimensional asymptotically optimally doubling measure in $\mathbb{R}^{n}$ ($n\geqslant 4$) has upper Minkowski dimension at most $n-4$. |
---|---|
ISSN: | 2050-5094 2050-5094 |
DOI: | 10.1017/fms.2015.26 |