Loading…

Anderson localization of a Rydberg electron

Highly excited Rydberg atoms inherit their level structure, symmetries, and scaling behavior from the hydrogen atom. We demonstrate that these fundamental properties enable a thermodynamic limit of a single Rydberg atom subjected to interactions with nearby ground-state atoms. The limit is reached b...

Full description

Saved in:
Bibliographic Details
Published in:Physical review research 2023-07, Vol.5 (3), p.033032, Article 033032
Main Authors: Eiles, Matthew T., Eisfeld, Alexander, Rost, Jan M.
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Highly excited Rydberg atoms inherit their level structure, symmetries, and scaling behavior from the hydrogen atom. We demonstrate that these fundamental properties enable a thermodynamic limit of a single Rydberg atom subjected to interactions with nearby ground-state atoms. The limit is reached by simultaneously increasing the number of ground-state atoms and the level of excitation of the Rydberg atom, for which the Coulomb potential supplies infinitely many and highly degenerate excited states. Our study reveals a surprising connection to an archetypal concept of condensed matter physics, Anderson localization, facilitated by a direct mapping between the Rydberg atom's electronic spectrum and the spectrum of a tight-binding Hamiltonian. The hopping amplitudes of this tight-binding system are determined by the arrangement of ground-state atoms and can range from oscillatory and long-ranged to nearest-neighbor. In the latter we identify clear signatures of the Anderson localization of the Rydberg electron.
ISSN:2643-1564
2643-1564
DOI:10.1103/PhysRevResearch.5.033032