Loading…
The site-perimeter of words
We define $[k]={1, 2, 3,ldots,k}$ to be a (totally ordered) {em alphabet} on $k$ letters. A {em word} $w$ of length $n$ on the alphabet $[k]$ is an element of $[k]^n$. A word can be represented by a bargraph which is a family of column-convex polyominoes whose lower edge lies on the $x$-axis...
Saved in:
Published in: | Transactions on combinatorics 2017-06, Vol.6 (2), p.37-48 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We define $[k]={1, 2, 3,ldots,k}$ to be a (totally ordered) {em alphabet} on $k$ letters. A {em word} $w$ of length $n$ on the alphabet $[k]$ is an element of $[k]^n$. A word can be represented by a bargraph which is a family of column-convex polyominoes whose lower edge lies on the $x$-axis and in which the height of the $i$-th column in the bargraph equals the size of the $i$-th part of the word. Thus these bargraphs have heights which are less than or equal to $k$. We consider the site-perimeter, which is the number of nearest-neighbour cells outside the boundary of the polyomino. The generating function that counts the site-perimeter of words is obtained explicitly. From a functional equation we find the average site-perimeter of words of length $n$ over the alphabet $[k]$. We also show how these statistics may be obtained using a direct counting method and obtain the minimum and maximum values of the site-perimeters. |
---|---|
ISSN: | 2251-8657 2251-8665 |
DOI: | 10.22108/toc.2017.21465 |