Loading…

Sparse analytic systems

Erdős [7] proved that the Continuum Hypothesis (CH) is equivalent to the existence of an uncountable family $\mathcal {F}$ of (real or complex) analytic functions, such that $\big \{ f(x) \ : \ f \in \mathcal {F} \big \}$ is countable for every x. We strengthen Erdős’ result by proving that CH is eq...

Full description

Saved in:
Bibliographic Details
Published in:Forum of mathematics. Sigma 2023-07, Vol.11, Article e58
Main Authors: Cody, Brent, Cox, Sean, Lee, Kayla
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Erdős [7] proved that the Continuum Hypothesis (CH) is equivalent to the existence of an uncountable family $\mathcal {F}$ of (real or complex) analytic functions, such that $\big \{ f(x) \ : \ f \in \mathcal {F} \big \}$ is countable for every x. We strengthen Erdős’ result by proving that CH is equivalent to the existence of what we call sparse analytic systems of functions. We use such systems to construct, assuming CH, an equivalence relation $\sim $ on $\mathbb {R}$ such that any ‘analytic-anonymous’ attempt to predict the map $x \mapsto [x]_\sim $ must fail almost everywhere. This provides a consistently negative answer to a question of Bajpai-Velleman [2].
ISSN:2050-5094
2050-5094
DOI:10.1017/fms.2023.54