Loading…

A multi-dimensional hierarchical evaluation system for data quality in trustworthy AI

Recently, the widespread adoption of artificial intelligence (AI) has given rise to a significant trust crisis, stemming from the persistent emergence of issues in practical applications. As a crucial component of AI, data has a profound impact on the trustworthiness of AI. Nevertheless, researchers...

Full description

Saved in:
Bibliographic Details
Published in:Journal of big data 2024-09, Vol.11 (1), p.136-26, Article 136
Main Authors: Zhang, Hui-Juan, Chen, Can-Can, Ran, Peng, Yang, Kai, Liu, Quan-Chao, Sun, Zhe-Yuan, Chen, Jia, Chen, Jia-Ke
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Recently, the widespread adoption of artificial intelligence (AI) has given rise to a significant trust crisis, stemming from the persistent emergence of issues in practical applications. As a crucial component of AI, data has a profound impact on the trustworthiness of AI. Nevertheless, researchers have struggled with the challenge of rationally assessing data quality, primarily due to the scarcity of versatile and effective evaluation methods. To address this trouble, a multi-dimensional hierarchical evaluation system (MDHES) is proposed to estimate the data quality. Initially, multiple key dimensions are devised to evaluate specific data conditions separately by the calculation of individual scores. Then, the strengths and weaknesses among various dimensions can be provided a clearer understanding. Furthermore, a comprehensive evaluation method, incorporating a fuzzy evaluation model, is developed to synthetically evaluate the data quality. Then, this evaluation method can achieve a dynamic balance, and meanwhile achieve a harmonious integration of subjectivity and objectivity criteria to ensure a more precise assessment result. Finally, rigorous experiment verification and comparison in both benchmark problems and real-world applications demonstrate the effectiveness of the proposed MDHES, which can accurately assess data quality to provide a strong data support for the development of trustworthy AI.
ISSN:2196-1115
2196-1115
DOI:10.1186/s40537-024-00999-2