Loading…
Aberrant Alternative Splicing Events in Parkinson's Disease
Alternative splicing (AS) using a sole gene to express multiple transcripts with diverse protein coding sequences and/or RNA regulatory elements raises genomic complexities. In the nervous system, several thousand AS events play important roles in ion transportation, receptor recognition, neurotrans...
Saved in:
Published in: | Cell Transplantation 2013-04, Vol.22 (4), p.653-661 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Alternative splicing (AS) using a sole gene to express multiple transcripts with diverse protein coding sequences and/or RNA regulatory elements raises genomic complexities. In the nervous system, several thousand AS events play important roles in ion transportation, receptor recognition, neurotransmission, memory, and learning. Not surprisingly, AS influences human physiology, development, and disease. Many research studies have focused on aberrant AS in nervous system diseases, including Parkinson's disease (PD), the second most common progressive neurodegenerative disorder of the central nervous system. PD affects the lives of several million people globally. It is caused by protein aggregation, such as in Lewy bodies, and the loss of dopamine-containing neurons in the substantia nigra of the midbrain. To our knowledge, six genes, including PARK2, SNCAIP, LRRK2, SNCA, SRRM2, and MAPT, are involved in aberrant AS events in PD patients. In this review, we highlight the relevance of aberrant AS in PD and discuss the use of an aberrant AS profile as a potential diagnostic or prognostic marker for PD and as a possible means of applying therapy. |
---|---|
ISSN: | 0963-6897 1555-3892 |
DOI: | 10.3727/096368912X655154 |