Loading…

Efficient siRNA delivery and gene silencing using a lipopolypeptide hybrid vector mediated by a caveolae-mediated and temperature-dependent endocytic pathway

We developed a non-viral vector, a combination of HIV-1 Tat peptide modified with histidine and cysteine (mTat) and polyethylenimine, jetPEI (PEI), displaying the high efficiency of plasmid DNA transfection with little toxicity. Since the highest efficiency of INTERFERin (INT), a cationic amphiphili...

Full description

Saved in:
Bibliographic Details
Published in:Journal of nanobiotechnology 2019-01, Vol.17 (1), p.11-11, Article 11
Main Authors: Kasai, Hironori, Inoue, Kenji, Imamura, Kentaro, Yuvienco, Carlo, Montclare, Jin K, Yamano, Seiichi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We developed a non-viral vector, a combination of HIV-1 Tat peptide modified with histidine and cysteine (mTat) and polyethylenimine, jetPEI (PEI), displaying the high efficiency of plasmid DNA transfection with little toxicity. Since the highest efficiency of INTERFERin (INT), a cationic amphiphilic lipid-based reagent, for small interfering RNA (siRNA) transfection among six commercial reagents was shown, we hypothesized that combining mTat/PEI with INT would improve transfection efficiency of siRNA delivery. To elucidate the efficacy of the hybrid vector for siRNA silencing, β-actin expression was measured after siRNA β-actin was transfected with mTat/PEI/INT or other vectors in HSC-3 human oral squamous carcinoma cells. mTat/PEI/INT/siRNA produced significant improvement in transfection efficiency with little cytotoxicity compared to other vectors and achieved ≈ 100% knockdown of β-actin expression compared to non-treated cells. The electric charge of mTat/PEI/INT/siRNA was significantly higher than INT/siRNA. The particle size of mTat/PEI/INT/siRNA was significantly smaller than INT/siRNA. Filipin III and β-cyclodextrin, an inhibitor of caveolae-mediated endocytosis, significantly inhibited mTat/PEI/INT/siRNA transfection, while chlorpromazine, an inhibitor of clathrin-mediated endocytosis, did not inhibit mTat/PEI/INT/siRNA transfection. Furthermore, the transfection efficiency of mTat/PEI/INT at 4 °C was significantly lower than 37 °C. These findings demonstrated the feasibility of using mTat/PEI/INT as a potentially attractive non-viral vector for siRNA delivery.
ISSN:1477-3155
1477-3155
DOI:10.1186/s12951-019-0444-8