Loading…
New Bounds for the Randić Index of Graphs
The Randić index of a graph G is defined as the sum of weights 1/dudv over all edges uv of G, where du and dv are the degrees of the vertices u and v in G, respectively. In this paper, we will obtain lower and upper bounds for the Randić index in terms of size, maximum degree, and minimum degree. Mo...
Saved in:
Published in: | Journal of mathematics (Hidawi) 2021, Vol.2021, p.1-8 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The Randić index of a graph G is defined as the sum of weights 1/dudv over all edges uv of G, where du and dv are the degrees of the vertices u and v in G, respectively. In this paper, we will obtain lower and upper bounds for the Randić index in terms of size, maximum degree, and minimum degree. Moreover, we obtain a generally lower and a general upper bound for the Randić index. |
---|---|
ISSN: | 2314-4629 2314-4785 |
DOI: | 10.1155/2021/9938406 |