Loading…

Gap-free global annual soil moisture: 15 km grids for 1991–2018

Soil moisture is key for understanding soil–plant–atmosphere interactions. We provide a soil moisture pattern recognition framework to increase the spatial resolution and fill gaps of the ESA-CCI (European Space Agency Climate Change Initiative v4.5) soil moisture dataset, which contains > 40 yea...

Full description

Saved in:
Bibliographic Details
Published in:Earth system science data 2021-04, Vol.13 (4), p.1711-1735
Main Authors: Guevara, Mario, Taufer, Michela, Vargas, Rodrigo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3281-953720f3607eca987c580d68947e04745494a032d4c57c441e88f55c33d6ffa43
cites cdi_FETCH-LOGICAL-c3281-953720f3607eca987c580d68947e04745494a032d4c57c441e88f55c33d6ffa43
container_end_page 1735
container_issue 4
container_start_page 1711
container_title Earth system science data
container_volume 13
creator Guevara, Mario
Taufer, Michela
Vargas, Rodrigo
description Soil moisture is key for understanding soil–plant–atmosphere interactions. We provide a soil moisture pattern recognition framework to increase the spatial resolution and fill gaps of the ESA-CCI (European Space Agency Climate Change Initiative v4.5) soil moisture dataset, which contains > 40 years of satellite soil moisture global grids with a spatial resolution of ∼ 27 km. We use terrain parameters coupled with bioclimatic and soil type information to predict finer-grained (i.e., downscaled) satellite soil moisture. We assess the impact of terrain parameters on the prediction accuracy by cross-validating downscaled soil moisture with and without the support of bioclimatic and soil type information. The outcome is a dataset of gap-free global mean annual soil moisture predictions and associated prediction variances for 28 years (1991–2018) across 15 km grids. We use independent in situ records from the International Soil Moisture Network (ISMN, 987 stations) and in situ precipitation records (171 additional stations) only for evaluating the new dataset. Cross-validated correlation between observed and predicted soil moisture values varies from r= 0.69 to r= 0.87 with root mean squared errors (RMSEs, m3 m−3) around 0.03 and 0.04. Our soil moisture predictions improve (a) the correlation with the ISMN (when compared with the original ESA-CCI dataset) from r= 0.30 (RMSE = 0.09, unbiased RMSE (ubRMSE) = 0.37) to r= 0.66 (RMSE = 0.05, ubRMSE = 0.18) and (b) the correlation with local precipitation records across boreal (from r= < 0.3 up to r= 0.49) or tropical areas (from r= < 0.3 to r= 0.46) which are currently poorly represented in the ISMN. Temporal trends show a decline of global annual soil moisture using (a) data from the ISMN (-1.5[-1.8,-1.24] %), (b) associated locations from the original ESA-CCI dataset (-0.87[-1.54,-0.17] %), (c) associated locations from predictions based on terrain parameters (-0.85[-1.01,-0.49] %), and (d) associated locations from predictions including bioclimatic and soil type information (-0.68[-0.91,-0.45] %). We provide a new soil moisture dataset that has no gaps and higher granularity together with validation methods and a modeling approach that can be applied worldwide (Guevara et al., 2020, https://doi.org/10.4211/hs.9f981ae4e68b4f529cdd7a5c9013e27e).
doi_str_mv 10.5194/essd-13-1711-2021
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_cfea2900095540669041c8ef7a58060d</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A659813668</galeid><doaj_id>oai_doaj_org_article_cfea2900095540669041c8ef7a58060d</doaj_id><sourcerecordid>A659813668</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3281-953720f3607eca987c580d68947e04745494a032d4c57c441e88f55c33d6ffa43</originalsourceid><addsrcrecordid>eNptkc9q3DAQxk1poGmSB-jN0FMPTmes_70toUkWAoGmPQtFloy2trWVbGhvfYe8YZ4k2mxpulDmMMPwm29m-KrqHcI5Q0U_upy7BkmDArFpocVX1TFKzhvCkL_-p35Tvc15A8ApCnZcra7MtvHJubof4r0ZajNNS0k5hqEeY8jzktynGln9faz7FLpc-5hqVAoffz-0gPK0OvJmyO7sTz6pvl1-_npx3dzcXq0vVjeNJa3ERjEiWvCEg3DWKCksk9BxqahwQAVlVFEDpO2oZcJSik5Kz5glpOPeG0pOqvVet4tmo7cpjCb90tEE_dyIqdcmzcEOTlvvTKsAQDFGgXMFFK10Xpiyk0NXtN7vtbYp_lhcnvUmLmkq5-uWoWRKEWAvVG-KaJh8nJOxY8hWrzhTEgnnslDn_6FKdG4MNk7Oh9I_GPhwMFCY2f2ce7PkrNd3Xw5Z3LM2xZyT838fR9A74_XOeI1E74zXO-PJE50Pmnw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2518599305</pqid></control><display><type>article</type><title>Gap-free global annual soil moisture: 15 km grids for 1991–2018</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>EZB Electronic Journals Library</source><creator>Guevara, Mario ; Taufer, Michela ; Vargas, Rodrigo</creator><creatorcontrib>Guevara, Mario ; Taufer, Michela ; Vargas, Rodrigo</creatorcontrib><description>Soil moisture is key for understanding soil–plant–atmosphere interactions. We provide a soil moisture pattern recognition framework to increase the spatial resolution and fill gaps of the ESA-CCI (European Space Agency Climate Change Initiative v4.5) soil moisture dataset, which contains &gt; 40 years of satellite soil moisture global grids with a spatial resolution of ∼ 27 km. We use terrain parameters coupled with bioclimatic and soil type information to predict finer-grained (i.e., downscaled) satellite soil moisture. We assess the impact of terrain parameters on the prediction accuracy by cross-validating downscaled soil moisture with and without the support of bioclimatic and soil type information. The outcome is a dataset of gap-free global mean annual soil moisture predictions and associated prediction variances for 28 years (1991–2018) across 15 km grids. We use independent in situ records from the International Soil Moisture Network (ISMN, 987 stations) and in situ precipitation records (171 additional stations) only for evaluating the new dataset. Cross-validated correlation between observed and predicted soil moisture values varies from r= 0.69 to r= 0.87 with root mean squared errors (RMSEs, m3 m−3) around 0.03 and 0.04. Our soil moisture predictions improve (a) the correlation with the ISMN (when compared with the original ESA-CCI dataset) from r= 0.30 (RMSE = 0.09, unbiased RMSE (ubRMSE) = 0.37) to r= 0.66 (RMSE = 0.05, ubRMSE = 0.18) and (b) the correlation with local precipitation records across boreal (from r= &lt; 0.3 up to r= 0.49) or tropical areas (from r= &lt; 0.3 to r= 0.46) which are currently poorly represented in the ISMN. Temporal trends show a decline of global annual soil moisture using (a) data from the ISMN (-1.5[-1.8,-1.24] %), (b) associated locations from the original ESA-CCI dataset (-0.87[-1.54,-0.17] %), (c) associated locations from predictions based on terrain parameters (-0.85[-1.01,-0.49] %), and (d) associated locations from predictions including bioclimatic and soil type information (-0.68[-0.91,-0.45] %). We provide a new soil moisture dataset that has no gaps and higher granularity together with validation methods and a modeling approach that can be applied worldwide (Guevara et al., 2020, https://doi.org/10.4211/hs.9f981ae4e68b4f529cdd7a5c9013e27e).</description><identifier>ISSN: 1866-3516</identifier><identifier>ISSN: 1866-3508</identifier><identifier>EISSN: 1866-3516</identifier><identifier>DOI: 10.5194/essd-13-1711-2021</identifier><language>eng</language><publisher>Katlenburg-Lindau: Copernicus GmbH</publisher><subject>Atmospheric models ; Bioclimatology ; Biometeorology ; Climate change ; Climatic changes ; Correlation ; Datasets ; Hydrologic cycle ; Hydrology ; Local precipitation ; Locations (working) ; Measurement techniques ; Nitrates ; Parameters ; Pattern recognition ; Precipitation ; Precipitation (Meteorology) ; Predictions ; Records ; Resolution ; Satellites ; Soil ; Soil improvement ; Soil moisture ; Soil types ; Soils ; Spatial discrimination ; Spatial resolution ; Stations ; Terrain ; Topography ; Tropical climate</subject><ispartof>Earth system science data, 2021-04, Vol.13 (4), p.1711-1735</ispartof><rights>COPYRIGHT 2021 Copernicus GmbH</rights><rights>2021. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3281-953720f3607eca987c580d68947e04745494a032d4c57c441e88f55c33d6ffa43</citedby><cites>FETCH-LOGICAL-c3281-953720f3607eca987c580d68947e04745494a032d4c57c441e88f55c33d6ffa43</cites><orcidid>0000-0001-6829-5333 ; 0000-0002-9788-9947</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2518599305/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2518599305?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Guevara, Mario</creatorcontrib><creatorcontrib>Taufer, Michela</creatorcontrib><creatorcontrib>Vargas, Rodrigo</creatorcontrib><title>Gap-free global annual soil moisture: 15 km grids for 1991–2018</title><title>Earth system science data</title><description>Soil moisture is key for understanding soil–plant–atmosphere interactions. We provide a soil moisture pattern recognition framework to increase the spatial resolution and fill gaps of the ESA-CCI (European Space Agency Climate Change Initiative v4.5) soil moisture dataset, which contains &gt; 40 years of satellite soil moisture global grids with a spatial resolution of ∼ 27 km. We use terrain parameters coupled with bioclimatic and soil type information to predict finer-grained (i.e., downscaled) satellite soil moisture. We assess the impact of terrain parameters on the prediction accuracy by cross-validating downscaled soil moisture with and without the support of bioclimatic and soil type information. The outcome is a dataset of gap-free global mean annual soil moisture predictions and associated prediction variances for 28 years (1991–2018) across 15 km grids. We use independent in situ records from the International Soil Moisture Network (ISMN, 987 stations) and in situ precipitation records (171 additional stations) only for evaluating the new dataset. Cross-validated correlation between observed and predicted soil moisture values varies from r= 0.69 to r= 0.87 with root mean squared errors (RMSEs, m3 m−3) around 0.03 and 0.04. Our soil moisture predictions improve (a) the correlation with the ISMN (when compared with the original ESA-CCI dataset) from r= 0.30 (RMSE = 0.09, unbiased RMSE (ubRMSE) = 0.37) to r= 0.66 (RMSE = 0.05, ubRMSE = 0.18) and (b) the correlation with local precipitation records across boreal (from r= &lt; 0.3 up to r= 0.49) or tropical areas (from r= &lt; 0.3 to r= 0.46) which are currently poorly represented in the ISMN. Temporal trends show a decline of global annual soil moisture using (a) data from the ISMN (-1.5[-1.8,-1.24] %), (b) associated locations from the original ESA-CCI dataset (-0.87[-1.54,-0.17] %), (c) associated locations from predictions based on terrain parameters (-0.85[-1.01,-0.49] %), and (d) associated locations from predictions including bioclimatic and soil type information (-0.68[-0.91,-0.45] %). We provide a new soil moisture dataset that has no gaps and higher granularity together with validation methods and a modeling approach that can be applied worldwide (Guevara et al., 2020, https://doi.org/10.4211/hs.9f981ae4e68b4f529cdd7a5c9013e27e).</description><subject>Atmospheric models</subject><subject>Bioclimatology</subject><subject>Biometeorology</subject><subject>Climate change</subject><subject>Climatic changes</subject><subject>Correlation</subject><subject>Datasets</subject><subject>Hydrologic cycle</subject><subject>Hydrology</subject><subject>Local precipitation</subject><subject>Locations (working)</subject><subject>Measurement techniques</subject><subject>Nitrates</subject><subject>Parameters</subject><subject>Pattern recognition</subject><subject>Precipitation</subject><subject>Precipitation (Meteorology)</subject><subject>Predictions</subject><subject>Records</subject><subject>Resolution</subject><subject>Satellites</subject><subject>Soil</subject><subject>Soil improvement</subject><subject>Soil moisture</subject><subject>Soil types</subject><subject>Soils</subject><subject>Spatial discrimination</subject><subject>Spatial resolution</subject><subject>Stations</subject><subject>Terrain</subject><subject>Topography</subject><subject>Tropical climate</subject><issn>1866-3516</issn><issn>1866-3508</issn><issn>1866-3516</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptkc9q3DAQxk1poGmSB-jN0FMPTmes_70toUkWAoGmPQtFloy2trWVbGhvfYe8YZ4k2mxpulDmMMPwm29m-KrqHcI5Q0U_upy7BkmDArFpocVX1TFKzhvCkL_-p35Tvc15A8ApCnZcra7MtvHJubof4r0ZajNNS0k5hqEeY8jzktynGln9faz7FLpc-5hqVAoffz-0gPK0OvJmyO7sTz6pvl1-_npx3dzcXq0vVjeNJa3ERjEiWvCEg3DWKCksk9BxqahwQAVlVFEDpO2oZcJSik5Kz5glpOPeG0pOqvVet4tmo7cpjCb90tEE_dyIqdcmzcEOTlvvTKsAQDFGgXMFFK10Xpiyk0NXtN7vtbYp_lhcnvUmLmkq5-uWoWRKEWAvVG-KaJh8nJOxY8hWrzhTEgnnslDn_6FKdG4MNk7Oh9I_GPhwMFCY2f2ce7PkrNd3Xw5Z3LM2xZyT838fR9A74_XOeI1E74zXO-PJE50Pmnw</recordid><startdate>20210427</startdate><enddate>20210427</enddate><creator>Guevara, Mario</creator><creator>Taufer, Michela</creator><creator>Vargas, Rodrigo</creator><general>Copernicus GmbH</general><general>Copernicus Publications</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>7SN</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BFMQW</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M7S</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-6829-5333</orcidid><orcidid>https://orcid.org/0000-0002-9788-9947</orcidid></search><sort><creationdate>20210427</creationdate><title>Gap-free global annual soil moisture: 15 km grids for 1991–2018</title><author>Guevara, Mario ; Taufer, Michela ; Vargas, Rodrigo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3281-953720f3607eca987c580d68947e04745494a032d4c57c441e88f55c33d6ffa43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Atmospheric models</topic><topic>Bioclimatology</topic><topic>Biometeorology</topic><topic>Climate change</topic><topic>Climatic changes</topic><topic>Correlation</topic><topic>Datasets</topic><topic>Hydrologic cycle</topic><topic>Hydrology</topic><topic>Local precipitation</topic><topic>Locations (working)</topic><topic>Measurement techniques</topic><topic>Nitrates</topic><topic>Parameters</topic><topic>Pattern recognition</topic><topic>Precipitation</topic><topic>Precipitation (Meteorology)</topic><topic>Predictions</topic><topic>Records</topic><topic>Resolution</topic><topic>Satellites</topic><topic>Soil</topic><topic>Soil improvement</topic><topic>Soil moisture</topic><topic>Soil types</topic><topic>Soils</topic><topic>Spatial discrimination</topic><topic>Spatial resolution</topic><topic>Stations</topic><topic>Terrain</topic><topic>Topography</topic><topic>Tropical climate</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guevara, Mario</creatorcontrib><creatorcontrib>Taufer, Michela</creatorcontrib><creatorcontrib>Vargas, Rodrigo</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>Ecology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Continental Europe Database</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Engineering Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Earth system science data</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guevara, Mario</au><au>Taufer, Michela</au><au>Vargas, Rodrigo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gap-free global annual soil moisture: 15 km grids for 1991–2018</atitle><jtitle>Earth system science data</jtitle><date>2021-04-27</date><risdate>2021</risdate><volume>13</volume><issue>4</issue><spage>1711</spage><epage>1735</epage><pages>1711-1735</pages><issn>1866-3516</issn><issn>1866-3508</issn><eissn>1866-3516</eissn><abstract>Soil moisture is key for understanding soil–plant–atmosphere interactions. We provide a soil moisture pattern recognition framework to increase the spatial resolution and fill gaps of the ESA-CCI (European Space Agency Climate Change Initiative v4.5) soil moisture dataset, which contains &gt; 40 years of satellite soil moisture global grids with a spatial resolution of ∼ 27 km. We use terrain parameters coupled with bioclimatic and soil type information to predict finer-grained (i.e., downscaled) satellite soil moisture. We assess the impact of terrain parameters on the prediction accuracy by cross-validating downscaled soil moisture with and without the support of bioclimatic and soil type information. The outcome is a dataset of gap-free global mean annual soil moisture predictions and associated prediction variances for 28 years (1991–2018) across 15 km grids. We use independent in situ records from the International Soil Moisture Network (ISMN, 987 stations) and in situ precipitation records (171 additional stations) only for evaluating the new dataset. Cross-validated correlation between observed and predicted soil moisture values varies from r= 0.69 to r= 0.87 with root mean squared errors (RMSEs, m3 m−3) around 0.03 and 0.04. Our soil moisture predictions improve (a) the correlation with the ISMN (when compared with the original ESA-CCI dataset) from r= 0.30 (RMSE = 0.09, unbiased RMSE (ubRMSE) = 0.37) to r= 0.66 (RMSE = 0.05, ubRMSE = 0.18) and (b) the correlation with local precipitation records across boreal (from r= &lt; 0.3 up to r= 0.49) or tropical areas (from r= &lt; 0.3 to r= 0.46) which are currently poorly represented in the ISMN. Temporal trends show a decline of global annual soil moisture using (a) data from the ISMN (-1.5[-1.8,-1.24] %), (b) associated locations from the original ESA-CCI dataset (-0.87[-1.54,-0.17] %), (c) associated locations from predictions based on terrain parameters (-0.85[-1.01,-0.49] %), and (d) associated locations from predictions including bioclimatic and soil type information (-0.68[-0.91,-0.45] %). We provide a new soil moisture dataset that has no gaps and higher granularity together with validation methods and a modeling approach that can be applied worldwide (Guevara et al., 2020, https://doi.org/10.4211/hs.9f981ae4e68b4f529cdd7a5c9013e27e).</abstract><cop>Katlenburg-Lindau</cop><pub>Copernicus GmbH</pub><doi>10.5194/essd-13-1711-2021</doi><tpages>25</tpages><orcidid>https://orcid.org/0000-0001-6829-5333</orcidid><orcidid>https://orcid.org/0000-0002-9788-9947</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1866-3516
ispartof Earth system science data, 2021-04, Vol.13 (4), p.1711-1735
issn 1866-3516
1866-3508
1866-3516
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_cfea2900095540669041c8ef7a58060d
source Publicly Available Content Database (Proquest) (PQ_SDU_P3); EZB Electronic Journals Library
subjects Atmospheric models
Bioclimatology
Biometeorology
Climate change
Climatic changes
Correlation
Datasets
Hydrologic cycle
Hydrology
Local precipitation
Locations (working)
Measurement techniques
Nitrates
Parameters
Pattern recognition
Precipitation
Precipitation (Meteorology)
Predictions
Records
Resolution
Satellites
Soil
Soil improvement
Soil moisture
Soil types
Soils
Spatial discrimination
Spatial resolution
Stations
Terrain
Topography
Tropical climate
title Gap-free global annual soil moisture: 15 km grids for 1991–2018
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T12%3A15%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gap-free%20global%20annual%20soil%20moisture:%2015%20km%20grids%20for%201991%E2%80%932018&rft.jtitle=Earth%20system%20science%20data&rft.au=Guevara,%20Mario&rft.date=2021-04-27&rft.volume=13&rft.issue=4&rft.spage=1711&rft.epage=1735&rft.pages=1711-1735&rft.issn=1866-3516&rft.eissn=1866-3516&rft_id=info:doi/10.5194/essd-13-1711-2021&rft_dat=%3Cgale_doaj_%3EA659813668%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3281-953720f3607eca987c580d68947e04745494a032d4c57c441e88f55c33d6ffa43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2518599305&rft_id=info:pmid/&rft_galeid=A659813668&rfr_iscdi=true