Loading…
Enhanced multi-dataset transfer learning method for unsupervised person re-identification using co-training strategy
This study proposes progressive unsupervised co-learning for unsupervised person re-identification by introducing a co-training strategy in an iterative training process. The authors’ method adopts an iterative training process to improve transferred models by iterating among clustering, selection,...
Saved in:
Published in: | IET computer vision 2018-12, Vol.12 (8), p.1219-1227 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This study proposes progressive unsupervised co-learning for unsupervised person re-identification by introducing a co-training strategy in an iterative training process. The authors’ method adopts an iterative training process to improve transferred models by iterating among clustering, selection, exchange, and fine-tuning. To solve the problem of transferring representations learned from multiple source datasets, their method utilises multiple convolutional neural network (CNN) models trained on different labelled source datasets by feeding soft labels obtained by clustering on target dataset to each other. The enhanced model can learn more discriminative person representations than the single model trained on multiple datasets. Experimental results on two large-scale benchmark datasets (i.e. DukeMTMC-reID and Market-1501) demonstrate that their method can enhance transferred CNN models by using more source datasets and is competitive to the state-of-the-art methods. |
---|---|
ISSN: | 1751-9632 1751-9640 1751-9640 |
DOI: | 10.1049/iet-cvi.2018.5103 |