Loading…

Enhanced multi-dataset transfer learning method for unsupervised person re-identification using co-training strategy

This study proposes progressive unsupervised co-learning for unsupervised person re-identification by introducing a co-training strategy in an iterative training process. The authors’ method adopts an iterative training process to improve transferred models by iterating among clustering, selection,...

Full description

Saved in:
Bibliographic Details
Published in:IET computer vision 2018-12, Vol.12 (8), p.1219-1227
Main Authors: Xian, Yuqiao, Hu, Haifeng
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3307-cf02a1d783310a521408e4ffa79346208e36160bba65fedd70c76d17104794c03
cites cdi_FETCH-LOGICAL-c3307-cf02a1d783310a521408e4ffa79346208e36160bba65fedd70c76d17104794c03
container_end_page 1227
container_issue 8
container_start_page 1219
container_title IET computer vision
container_volume 12
creator Xian, Yuqiao
Hu, Haifeng
description This study proposes progressive unsupervised co-learning for unsupervised person re-identification by introducing a co-training strategy in an iterative training process. The authors’ method adopts an iterative training process to improve transferred models by iterating among clustering, selection, exchange, and fine-tuning. To solve the problem of transferring representations learned from multiple source datasets, their method utilises multiple convolutional neural network (CNN) models trained on different labelled source datasets by feeding soft labels obtained by clustering on target dataset to each other. The enhanced model can learn more discriminative person representations than the single model trained on multiple datasets. Experimental results on two large-scale benchmark datasets (i.e. DukeMTMC-reID and Market-1501) demonstrate that their method can enhance transferred CNN models by using more source datasets and is competitive to the state-of-the-art methods.
doi_str_mv 10.1049/iet-cvi.2018.5103
format article
fullrecord <record><control><sourceid>wiley_24P</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_d090f21e9c0f49c588d2a7525d40cd40</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_d090f21e9c0f49c588d2a7525d40cd40</doaj_id><sourcerecordid>CVI2BF00517</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3307-cf02a1d783310a521408e4ffa79346208e36160bba65fedd70c76d17104794c03</originalsourceid><addsrcrecordid>eNqFkc9u3CAQh62qlZqmfYDe_AJshz82prd2laQrRcol7RURGDasvBABTrVvX5ytcmwPiGHE9400v677TGFDQagvASuxz2HDgE6bgQJ_011QOVCiRgFvX2vO3ncfSjkADKNS4qKrV_HRRIuuPy5zDcSZagrWvmYTi8fcz2hyDHHfH7E-Jtf7lPslluUJ83MojWtFSbHPSILDWIMP1tTQOktZMZtIc4UXRWlVxf3pY_fOm7ngp7_3Zffz-up--4Pc3t3stt9uieUcJLEemKFOTpxTMAOjAiYU3hupuBhZe_CRjvDwYMbBo3MSrBwdlW0hUgkL_LLbnb0umYN-yuFo8kknE_RLI-W9NrkGO6N2oMAzisqCF8oO0-SYkQMbnADbTnPRs8vmVEpG_-qjoNcIdItAtwj0GoFeI2jM1zPzO8x4-j-gt7927Pt1C4fKBpMzvH47pCXHtqp_DPsDXtGeHw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Enhanced multi-dataset transfer learning method for unsupervised person re-identification using co-training strategy</title><source>Wiley Online Library Open Access</source><creator>Xian, Yuqiao ; Hu, Haifeng</creator><creatorcontrib>Xian, Yuqiao ; Hu, Haifeng</creatorcontrib><description>This study proposes progressive unsupervised co-learning for unsupervised person re-identification by introducing a co-training strategy in an iterative training process. The authors’ method adopts an iterative training process to improve transferred models by iterating among clustering, selection, exchange, and fine-tuning. To solve the problem of transferring representations learned from multiple source datasets, their method utilises multiple convolutional neural network (CNN) models trained on different labelled source datasets by feeding soft labels obtained by clustering on target dataset to each other. The enhanced model can learn more discriminative person representations than the single model trained on multiple datasets. Experimental results on two large-scale benchmark datasets (i.e. DukeMTMC-reID and Market-1501) demonstrate that their method can enhance transferred CNN models by using more source datasets and is competitive to the state-of-the-art methods.</description><identifier>ISSN: 1751-9632</identifier><identifier>ISSN: 1751-9640</identifier><identifier>EISSN: 1751-9640</identifier><identifier>DOI: 10.1049/iet-cvi.2018.5103</identifier><language>eng</language><publisher>The Institution of Engineering and Technology</publisher><subject>CNN models ; co-training strategy ; discriminative person representations ; enhanced multidataset transfer learning method ; image recognition ; image representation ; iterative methods ; iterative training process ; labelled source datasets ; large-scale benchmark datasets ; multiple convolutional neural network models ; multiple source datasets ; neural nets ; pattern clustering ; progressive unsupervised co-learning ; Research Article ; single model ; soft labels ; target dataset clustering ; transferred models ; unsupervised learning ; unsupervised person re-identification</subject><ispartof>IET computer vision, 2018-12, Vol.12 (8), p.1219-1227</ispartof><rights>The Institution of Engineering and Technology</rights><rights>2018 The Institution of Engineering and Technology</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3307-cf02a1d783310a521408e4ffa79346208e36160bba65fedd70c76d17104794c03</citedby><cites>FETCH-LOGICAL-c3307-cf02a1d783310a521408e4ffa79346208e36160bba65fedd70c76d17104794c03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1049%2Fiet-cvi.2018.5103$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1049%2Fiet-cvi.2018.5103$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,9755,11562,27924,27925,46052,46476</link.rule.ids><linktorsrc>$$Uhttps://onlinelibrary.wiley.com/doi/abs/10.1049%2Fiet-cvi.2018.5103$$EView_record_in_Wiley-Blackwell$$FView_record_in_$$GWiley-Blackwell</linktorsrc></links><search><creatorcontrib>Xian, Yuqiao</creatorcontrib><creatorcontrib>Hu, Haifeng</creatorcontrib><title>Enhanced multi-dataset transfer learning method for unsupervised person re-identification using co-training strategy</title><title>IET computer vision</title><description>This study proposes progressive unsupervised co-learning for unsupervised person re-identification by introducing a co-training strategy in an iterative training process. The authors’ method adopts an iterative training process to improve transferred models by iterating among clustering, selection, exchange, and fine-tuning. To solve the problem of transferring representations learned from multiple source datasets, their method utilises multiple convolutional neural network (CNN) models trained on different labelled source datasets by feeding soft labels obtained by clustering on target dataset to each other. The enhanced model can learn more discriminative person representations than the single model trained on multiple datasets. Experimental results on two large-scale benchmark datasets (i.e. DukeMTMC-reID and Market-1501) demonstrate that their method can enhance transferred CNN models by using more source datasets and is competitive to the state-of-the-art methods.</description><subject>CNN models</subject><subject>co-training strategy</subject><subject>discriminative person representations</subject><subject>enhanced multidataset transfer learning method</subject><subject>image recognition</subject><subject>image representation</subject><subject>iterative methods</subject><subject>iterative training process</subject><subject>labelled source datasets</subject><subject>large-scale benchmark datasets</subject><subject>multiple convolutional neural network models</subject><subject>multiple source datasets</subject><subject>neural nets</subject><subject>pattern clustering</subject><subject>progressive unsupervised co-learning</subject><subject>Research Article</subject><subject>single model</subject><subject>soft labels</subject><subject>target dataset clustering</subject><subject>transferred models</subject><subject>unsupervised learning</subject><subject>unsupervised person re-identification</subject><issn>1751-9632</issn><issn>1751-9640</issn><issn>1751-9640</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNqFkc9u3CAQh62qlZqmfYDe_AJshz82prd2laQrRcol7RURGDasvBABTrVvX5ytcmwPiGHE9400v677TGFDQagvASuxz2HDgE6bgQJ_011QOVCiRgFvX2vO3ncfSjkADKNS4qKrV_HRRIuuPy5zDcSZagrWvmYTi8fcz2hyDHHfH7E-Jtf7lPslluUJ83MojWtFSbHPSILDWIMP1tTQOktZMZtIc4UXRWlVxf3pY_fOm7ngp7_3Zffz-up--4Pc3t3stt9uieUcJLEemKFOTpxTMAOjAiYU3hupuBhZe_CRjvDwYMbBo3MSrBwdlW0hUgkL_LLbnb0umYN-yuFo8kknE_RLI-W9NrkGO6N2oMAzisqCF8oO0-SYkQMbnADbTnPRs8vmVEpG_-qjoNcIdItAtwj0GoFeI2jM1zPzO8x4-j-gt7927Pt1C4fKBpMzvH47pCXHtqp_DPsDXtGeHw</recordid><startdate>201812</startdate><enddate>201812</enddate><creator>Xian, Yuqiao</creator><creator>Hu, Haifeng</creator><general>The Institution of Engineering and Technology</general><general>Wiley</general><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope></search><sort><creationdate>201812</creationdate><title>Enhanced multi-dataset transfer learning method for unsupervised person re-identification using co-training strategy</title><author>Xian, Yuqiao ; Hu, Haifeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3307-cf02a1d783310a521408e4ffa79346208e36160bba65fedd70c76d17104794c03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>CNN models</topic><topic>co-training strategy</topic><topic>discriminative person representations</topic><topic>enhanced multidataset transfer learning method</topic><topic>image recognition</topic><topic>image representation</topic><topic>iterative methods</topic><topic>iterative training process</topic><topic>labelled source datasets</topic><topic>large-scale benchmark datasets</topic><topic>multiple convolutional neural network models</topic><topic>multiple source datasets</topic><topic>neural nets</topic><topic>pattern clustering</topic><topic>progressive unsupervised co-learning</topic><topic>Research Article</topic><topic>single model</topic><topic>soft labels</topic><topic>target dataset clustering</topic><topic>transferred models</topic><topic>unsupervised learning</topic><topic>unsupervised person re-identification</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xian, Yuqiao</creatorcontrib><creatorcontrib>Hu, Haifeng</creatorcontrib><collection>CrossRef</collection><collection>Directory of Open Access Journals</collection><jtitle>IET computer vision</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xian, Yuqiao</au><au>Hu, Haifeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhanced multi-dataset transfer learning method for unsupervised person re-identification using co-training strategy</atitle><jtitle>IET computer vision</jtitle><date>2018-12</date><risdate>2018</risdate><volume>12</volume><issue>8</issue><spage>1219</spage><epage>1227</epage><pages>1219-1227</pages><issn>1751-9632</issn><issn>1751-9640</issn><eissn>1751-9640</eissn><abstract>This study proposes progressive unsupervised co-learning for unsupervised person re-identification by introducing a co-training strategy in an iterative training process. The authors’ method adopts an iterative training process to improve transferred models by iterating among clustering, selection, exchange, and fine-tuning. To solve the problem of transferring representations learned from multiple source datasets, their method utilises multiple convolutional neural network (CNN) models trained on different labelled source datasets by feeding soft labels obtained by clustering on target dataset to each other. The enhanced model can learn more discriminative person representations than the single model trained on multiple datasets. Experimental results on two large-scale benchmark datasets (i.e. DukeMTMC-reID and Market-1501) demonstrate that their method can enhance transferred CNN models by using more source datasets and is competitive to the state-of-the-art methods.</abstract><pub>The Institution of Engineering and Technology</pub><doi>10.1049/iet-cvi.2018.5103</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1751-9632
ispartof IET computer vision, 2018-12, Vol.12 (8), p.1219-1227
issn 1751-9632
1751-9640
1751-9640
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_d090f21e9c0f49c588d2a7525d40cd40
source Wiley Online Library Open Access
subjects CNN models
co-training strategy
discriminative person representations
enhanced multidataset transfer learning method
image recognition
image representation
iterative methods
iterative training process
labelled source datasets
large-scale benchmark datasets
multiple convolutional neural network models
multiple source datasets
neural nets
pattern clustering
progressive unsupervised co-learning
Research Article
single model
soft labels
target dataset clustering
transferred models
unsupervised learning
unsupervised person re-identification
title Enhanced multi-dataset transfer learning method for unsupervised person re-identification using co-training strategy
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T07%3A37%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_24P&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhanced%20multi-dataset%20transfer%20learning%20method%20for%20unsupervised%20person%20re-identification%20using%20co-training%20strategy&rft.jtitle=IET%20computer%20vision&rft.au=Xian,%20Yuqiao&rft.date=2018-12&rft.volume=12&rft.issue=8&rft.spage=1219&rft.epage=1227&rft.pages=1219-1227&rft.issn=1751-9632&rft.eissn=1751-9640&rft_id=info:doi/10.1049/iet-cvi.2018.5103&rft_dat=%3Cwiley_24P%3ECVI2BF00517%3C/wiley_24P%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3307-cf02a1d783310a521408e4ffa79346208e36160bba65fedd70c76d17104794c03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true