Loading…
Making an unknown unknown a known unknown: Missing data in longitudinal neuroimaging studies
The analysis of longitudinal neuroimaging data within the massively univariate framework provides the opportunity to study empirical questions about neurodevelopment. Missing outcome data are an all-to-common feature of any longitudinal study, a feature that, if handled improperly, can reduce statis...
Saved in:
Published in: | Developmental cognitive neuroscience 2018-10, Vol.33, p.83-98 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c541t-5361ce8736f26f14f3e051dca4b5f965ed56710be3e85bcc3cb2d1453ae096c63 |
---|---|
cites | cdi_FETCH-LOGICAL-c541t-5361ce8736f26f14f3e051dca4b5f965ed56710be3e85bcc3cb2d1453ae096c63 |
container_end_page | 98 |
container_issue | |
container_start_page | 83 |
container_title | Developmental cognitive neuroscience |
container_volume | 33 |
creator | Matta, Tyler H. Flournoy, John C. Byrne, Michelle L. |
description | The analysis of longitudinal neuroimaging data within the massively univariate framework provides the opportunity to study empirical questions about neurodevelopment. Missing outcome data are an all-to-common feature of any longitudinal study, a feature that, if handled improperly, can reduce statistical power and lead to biased parameter estimates. The goal of this paper is to provide conceptual clarity of the issues and non-issues that arise from analyzing incomplete data in longitudinal studies with particular focus on neuroimaging data. This paper begins with a review of the hierarchy of missing data mechanisms and their relationship to likelihood-based methods, a review that is necessary not just for likelihood-based methods, but also for multiple-imputation methods. Next, the paper provides a series of simulation studies with designs common in longitudinal neuroimaging studies to help illustrate missing data concepts regardless of interpretation. Finally, two applied examples are used to demonstrate the sensitivity of inferences under different missing data assumptions and how this may change the substantive interpretation. The paper concludes with a set of guidelines for analyzing incomplete longitudinal data that can improve the validity of research findings in developmental neuroimaging research. |
doi_str_mv | 10.1016/j.dcn.2017.10.001 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_d1e4960195494c1592e27ac5a6018479</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S187892931730066X</els_id><doaj_id>oai_doaj_org_article_d1e4960195494c1592e27ac5a6018479</doaj_id><sourcerecordid>1963467218</sourcerecordid><originalsourceid>FETCH-LOGICAL-c541t-5361ce8736f26f14f3e051dca4b5f965ed56710be3e85bcc3cb2d1453ae096c63</originalsourceid><addsrcrecordid>eNp9Uk1v1DAQjRCIVqU_gAvkyGW3Hn_GICFVFdBKrbjADclynEnwNmsXOyni3-Ow3cJe8GU8z2-ex55XVS-BrIGAPNusOxfWlIAq-ZoQeFIdQ6OalWZEPd3vqWZH1WnOG1IW05Jy-rw6ohqoloodV99u7K0PQ21DPYfbEH_-jbY-yN_WNz7nhdvZydY-1GMMg5_mzgc71gHnFP3WDgsjLyjmF9Wz3o4ZTx_iSfX144cvF5er68-fri7Or1dOcJhWgklw2Cgmeyp74D1DIqBzlrei11JgJ6QC0iLDRrTOMdfSDrhgFomWTrKT6mqn20W7MXeptJF-mWi9-QPENBibJu9GNB0g15KAFlxzB0JTpMo6YQvWcKWL1vud1t3cbrFzGKZkxwPRw5Pgv5sh3huppaZKFIHXOwGXfJ58MCEma4A0ghrJy-QK483DFSn-mDFPZuuzw3G0AeOcDWjJuFQUmkKFvVjMOWH_2AgQs9jAbEyxgVlssEDFBqXm1b8veKzYD70Q3u0IWGZy7zGZ7DwGh51P6Kbyaf4_8r8BQPnCIw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1963467218</pqid></control><display><type>article</type><title>Making an unknown unknown a known unknown: Missing data in longitudinal neuroimaging studies</title><source>NORA - Norwegian Open Research Archives</source><source>ScienceDirect (Online service)</source><source>PubMed Central</source><creator>Matta, Tyler H. ; Flournoy, John C. ; Byrne, Michelle L.</creator><creatorcontrib>Matta, Tyler H. ; Flournoy, John C. ; Byrne, Michelle L.</creatorcontrib><description>The analysis of longitudinal neuroimaging data within the massively univariate framework provides the opportunity to study empirical questions about neurodevelopment. Missing outcome data are an all-to-common feature of any longitudinal study, a feature that, if handled improperly, can reduce statistical power and lead to biased parameter estimates. The goal of this paper is to provide conceptual clarity of the issues and non-issues that arise from analyzing incomplete data in longitudinal studies with particular focus on neuroimaging data. This paper begins with a review of the hierarchy of missing data mechanisms and their relationship to likelihood-based methods, a review that is necessary not just for likelihood-based methods, but also for multiple-imputation methods. Next, the paper provides a series of simulation studies with designs common in longitudinal neuroimaging studies to help illustrate missing data concepts regardless of interpretation. Finally, two applied examples are used to demonstrate the sensitivity of inferences under different missing data assumptions and how this may change the substantive interpretation. The paper concludes with a set of guidelines for analyzing incomplete longitudinal data that can improve the validity of research findings in developmental neuroimaging research.</description><identifier>ISSN: 1878-9293</identifier><identifier>EISSN: 1878-9307</identifier><identifier>DOI: 10.1016/j.dcn.2017.10.001</identifier><identifier>PMID: 29129673</identifier><language>eng</language><publisher>Netherlands: Elsevier Ltd</publisher><subject>Data Interpretation, Statistical ; Humans ; Likelihood ; Likelihood Functions ; Longitudinal data ; Longitudinal Studies ; Missing data ; Neuroimaging ; Neuroimaging - methods</subject><ispartof>Developmental cognitive neuroscience, 2018-10, Vol.33, p.83-98</ispartof><rights>2017 The Authors</rights><rights>Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.</rights><rights>info:eu-repo/semantics/openAccess</rights><rights>2017 The Authors 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c541t-5361ce8736f26f14f3e051dca4b5f965ed56710be3e85bcc3cb2d1453ae096c63</citedby><cites>FETCH-LOGICAL-c541t-5361ce8736f26f14f3e051dca4b5f965ed56710be3e85bcc3cb2d1453ae096c63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6969275/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S187892931730066X$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,3549,26567,27924,27925,45780,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29129673$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Matta, Tyler H.</creatorcontrib><creatorcontrib>Flournoy, John C.</creatorcontrib><creatorcontrib>Byrne, Michelle L.</creatorcontrib><title>Making an unknown unknown a known unknown: Missing data in longitudinal neuroimaging studies</title><title>Developmental cognitive neuroscience</title><addtitle>Dev Cogn Neurosci</addtitle><description>The analysis of longitudinal neuroimaging data within the massively univariate framework provides the opportunity to study empirical questions about neurodevelopment. Missing outcome data are an all-to-common feature of any longitudinal study, a feature that, if handled improperly, can reduce statistical power and lead to biased parameter estimates. The goal of this paper is to provide conceptual clarity of the issues and non-issues that arise from analyzing incomplete data in longitudinal studies with particular focus on neuroimaging data. This paper begins with a review of the hierarchy of missing data mechanisms and their relationship to likelihood-based methods, a review that is necessary not just for likelihood-based methods, but also for multiple-imputation methods. Next, the paper provides a series of simulation studies with designs common in longitudinal neuroimaging studies to help illustrate missing data concepts regardless of interpretation. Finally, two applied examples are used to demonstrate the sensitivity of inferences under different missing data assumptions and how this may change the substantive interpretation. The paper concludes with a set of guidelines for analyzing incomplete longitudinal data that can improve the validity of research findings in developmental neuroimaging research.</description><subject>Data Interpretation, Statistical</subject><subject>Humans</subject><subject>Likelihood</subject><subject>Likelihood Functions</subject><subject>Longitudinal data</subject><subject>Longitudinal Studies</subject><subject>Missing data</subject><subject>Neuroimaging</subject><subject>Neuroimaging - methods</subject><issn>1878-9293</issn><issn>1878-9307</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>3HK</sourceid><sourceid>DOA</sourceid><recordid>eNp9Uk1v1DAQjRCIVqU_gAvkyGW3Hn_GICFVFdBKrbjADclynEnwNmsXOyni3-Ow3cJe8GU8z2-ex55XVS-BrIGAPNusOxfWlIAq-ZoQeFIdQ6OalWZEPd3vqWZH1WnOG1IW05Jy-rw6ohqoloodV99u7K0PQ21DPYfbEH_-jbY-yN_WNz7nhdvZydY-1GMMg5_mzgc71gHnFP3WDgsjLyjmF9Wz3o4ZTx_iSfX144cvF5er68-fri7Or1dOcJhWgklw2Cgmeyp74D1DIqBzlrei11JgJ6QC0iLDRrTOMdfSDrhgFomWTrKT6mqn20W7MXeptJF-mWi9-QPENBibJu9GNB0g15KAFlxzB0JTpMo6YQvWcKWL1vud1t3cbrFzGKZkxwPRw5Pgv5sh3huppaZKFIHXOwGXfJ58MCEma4A0ghrJy-QK483DFSn-mDFPZuuzw3G0AeOcDWjJuFQUmkKFvVjMOWH_2AgQs9jAbEyxgVlssEDFBqXm1b8veKzYD70Q3u0IWGZy7zGZ7DwGh51P6Kbyaf4_8r8BQPnCIw</recordid><startdate>20181001</startdate><enddate>20181001</enddate><creator>Matta, Tyler H.</creator><creator>Flournoy, John C.</creator><creator>Byrne, Michelle L.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>3HK</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20181001</creationdate><title>Making an unknown unknown a known unknown: Missing data in longitudinal neuroimaging studies</title><author>Matta, Tyler H. ; Flournoy, John C. ; Byrne, Michelle L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c541t-5361ce8736f26f14f3e051dca4b5f965ed56710be3e85bcc3cb2d1453ae096c63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Data Interpretation, Statistical</topic><topic>Humans</topic><topic>Likelihood</topic><topic>Likelihood Functions</topic><topic>Longitudinal data</topic><topic>Longitudinal Studies</topic><topic>Missing data</topic><topic>Neuroimaging</topic><topic>Neuroimaging - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Matta, Tyler H.</creatorcontrib><creatorcontrib>Flournoy, John C.</creatorcontrib><creatorcontrib>Byrne, Michelle L.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>NORA - Norwegian Open Research Archives</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Developmental cognitive neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Matta, Tyler H.</au><au>Flournoy, John C.</au><au>Byrne, Michelle L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Making an unknown unknown a known unknown: Missing data in longitudinal neuroimaging studies</atitle><jtitle>Developmental cognitive neuroscience</jtitle><addtitle>Dev Cogn Neurosci</addtitle><date>2018-10-01</date><risdate>2018</risdate><volume>33</volume><spage>83</spage><epage>98</epage><pages>83-98</pages><issn>1878-9293</issn><eissn>1878-9307</eissn><abstract>The analysis of longitudinal neuroimaging data within the massively univariate framework provides the opportunity to study empirical questions about neurodevelopment. Missing outcome data are an all-to-common feature of any longitudinal study, a feature that, if handled improperly, can reduce statistical power and lead to biased parameter estimates. The goal of this paper is to provide conceptual clarity of the issues and non-issues that arise from analyzing incomplete data in longitudinal studies with particular focus on neuroimaging data. This paper begins with a review of the hierarchy of missing data mechanisms and their relationship to likelihood-based methods, a review that is necessary not just for likelihood-based methods, but also for multiple-imputation methods. Next, the paper provides a series of simulation studies with designs common in longitudinal neuroimaging studies to help illustrate missing data concepts regardless of interpretation. Finally, two applied examples are used to demonstrate the sensitivity of inferences under different missing data assumptions and how this may change the substantive interpretation. The paper concludes with a set of guidelines for analyzing incomplete longitudinal data that can improve the validity of research findings in developmental neuroimaging research.</abstract><cop>Netherlands</cop><pub>Elsevier Ltd</pub><pmid>29129673</pmid><doi>10.1016/j.dcn.2017.10.001</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1878-9293 |
ispartof | Developmental cognitive neuroscience, 2018-10, Vol.33, p.83-98 |
issn | 1878-9293 1878-9307 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_d1e4960195494c1592e27ac5a6018479 |
source | NORA - Norwegian Open Research Archives; ScienceDirect (Online service); PubMed Central |
subjects | Data Interpretation, Statistical Humans Likelihood Likelihood Functions Longitudinal data Longitudinal Studies Missing data Neuroimaging Neuroimaging - methods |
title | Making an unknown unknown a known unknown: Missing data in longitudinal neuroimaging studies |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T16%3A09%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Making%20an%20unknown%20unknown%20a%20known%20unknown:%20Missing%20data%20in%20longitudinal%20neuroimaging%20studies&rft.jtitle=Developmental%20cognitive%20neuroscience&rft.au=Matta,%20Tyler%20H.&rft.date=2018-10-01&rft.volume=33&rft.spage=83&rft.epage=98&rft.pages=83-98&rft.issn=1878-9293&rft.eissn=1878-9307&rft_id=info:doi/10.1016/j.dcn.2017.10.001&rft_dat=%3Cproquest_doaj_%3E1963467218%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c541t-5361ce8736f26f14f3e051dca4b5f965ed56710be3e85bcc3cb2d1453ae096c63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1963467218&rft_id=info:pmid/29129673&rfr_iscdi=true |