Loading…

Making an unknown unknown a known unknown: Missing data in longitudinal neuroimaging studies

The analysis of longitudinal neuroimaging data within the massively univariate framework provides the opportunity to study empirical questions about neurodevelopment. Missing outcome data are an all-to-common feature of any longitudinal study, a feature that, if handled improperly, can reduce statis...

Full description

Saved in:
Bibliographic Details
Published in:Developmental cognitive neuroscience 2018-10, Vol.33, p.83-98
Main Authors: Matta, Tyler H., Flournoy, John C., Byrne, Michelle L.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c541t-5361ce8736f26f14f3e051dca4b5f965ed56710be3e85bcc3cb2d1453ae096c63
cites cdi_FETCH-LOGICAL-c541t-5361ce8736f26f14f3e051dca4b5f965ed56710be3e85bcc3cb2d1453ae096c63
container_end_page 98
container_issue
container_start_page 83
container_title Developmental cognitive neuroscience
container_volume 33
creator Matta, Tyler H.
Flournoy, John C.
Byrne, Michelle L.
description The analysis of longitudinal neuroimaging data within the massively univariate framework provides the opportunity to study empirical questions about neurodevelopment. Missing outcome data are an all-to-common feature of any longitudinal study, a feature that, if handled improperly, can reduce statistical power and lead to biased parameter estimates. The goal of this paper is to provide conceptual clarity of the issues and non-issues that arise from analyzing incomplete data in longitudinal studies with particular focus on neuroimaging data. This paper begins with a review of the hierarchy of missing data mechanisms and their relationship to likelihood-based methods, a review that is necessary not just for likelihood-based methods, but also for multiple-imputation methods. Next, the paper provides a series of simulation studies with designs common in longitudinal neuroimaging studies to help illustrate missing data concepts regardless of interpretation. Finally, two applied examples are used to demonstrate the sensitivity of inferences under different missing data assumptions and how this may change the substantive interpretation. The paper concludes with a set of guidelines for analyzing incomplete longitudinal data that can improve the validity of research findings in developmental neuroimaging research.
doi_str_mv 10.1016/j.dcn.2017.10.001
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_d1e4960195494c1592e27ac5a6018479</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S187892931730066X</els_id><doaj_id>oai_doaj_org_article_d1e4960195494c1592e27ac5a6018479</doaj_id><sourcerecordid>1963467218</sourcerecordid><originalsourceid>FETCH-LOGICAL-c541t-5361ce8736f26f14f3e051dca4b5f965ed56710be3e85bcc3cb2d1453ae096c63</originalsourceid><addsrcrecordid>eNp9Uk1v1DAQjRCIVqU_gAvkyGW3Hn_GICFVFdBKrbjADclynEnwNmsXOyni3-Ow3cJe8GU8z2-ex55XVS-BrIGAPNusOxfWlIAq-ZoQeFIdQ6OalWZEPd3vqWZH1WnOG1IW05Jy-rw6ohqoloodV99u7K0PQ21DPYfbEH_-jbY-yN_WNz7nhdvZydY-1GMMg5_mzgc71gHnFP3WDgsjLyjmF9Wz3o4ZTx_iSfX144cvF5er68-fri7Or1dOcJhWgklw2Cgmeyp74D1DIqBzlrei11JgJ6QC0iLDRrTOMdfSDrhgFomWTrKT6mqn20W7MXeptJF-mWi9-QPENBibJu9GNB0g15KAFlxzB0JTpMo6YQvWcKWL1vud1t3cbrFzGKZkxwPRw5Pgv5sh3huppaZKFIHXOwGXfJ58MCEma4A0ghrJy-QK483DFSn-mDFPZuuzw3G0AeOcDWjJuFQUmkKFvVjMOWH_2AgQs9jAbEyxgVlssEDFBqXm1b8veKzYD70Q3u0IWGZy7zGZ7DwGh51P6Kbyaf4_8r8BQPnCIw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1963467218</pqid></control><display><type>article</type><title>Making an unknown unknown a known unknown: Missing data in longitudinal neuroimaging studies</title><source>NORA - Norwegian Open Research Archives</source><source>ScienceDirect (Online service)</source><source>PubMed Central</source><creator>Matta, Tyler H. ; Flournoy, John C. ; Byrne, Michelle L.</creator><creatorcontrib>Matta, Tyler H. ; Flournoy, John C. ; Byrne, Michelle L.</creatorcontrib><description>The analysis of longitudinal neuroimaging data within the massively univariate framework provides the opportunity to study empirical questions about neurodevelopment. Missing outcome data are an all-to-common feature of any longitudinal study, a feature that, if handled improperly, can reduce statistical power and lead to biased parameter estimates. The goal of this paper is to provide conceptual clarity of the issues and non-issues that arise from analyzing incomplete data in longitudinal studies with particular focus on neuroimaging data. This paper begins with a review of the hierarchy of missing data mechanisms and their relationship to likelihood-based methods, a review that is necessary not just for likelihood-based methods, but also for multiple-imputation methods. Next, the paper provides a series of simulation studies with designs common in longitudinal neuroimaging studies to help illustrate missing data concepts regardless of interpretation. Finally, two applied examples are used to demonstrate the sensitivity of inferences under different missing data assumptions and how this may change the substantive interpretation. The paper concludes with a set of guidelines for analyzing incomplete longitudinal data that can improve the validity of research findings in developmental neuroimaging research.</description><identifier>ISSN: 1878-9293</identifier><identifier>EISSN: 1878-9307</identifier><identifier>DOI: 10.1016/j.dcn.2017.10.001</identifier><identifier>PMID: 29129673</identifier><language>eng</language><publisher>Netherlands: Elsevier Ltd</publisher><subject>Data Interpretation, Statistical ; Humans ; Likelihood ; Likelihood Functions ; Longitudinal data ; Longitudinal Studies ; Missing data ; Neuroimaging ; Neuroimaging - methods</subject><ispartof>Developmental cognitive neuroscience, 2018-10, Vol.33, p.83-98</ispartof><rights>2017 The Authors</rights><rights>Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.</rights><rights>info:eu-repo/semantics/openAccess</rights><rights>2017 The Authors 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c541t-5361ce8736f26f14f3e051dca4b5f965ed56710be3e85bcc3cb2d1453ae096c63</citedby><cites>FETCH-LOGICAL-c541t-5361ce8736f26f14f3e051dca4b5f965ed56710be3e85bcc3cb2d1453ae096c63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6969275/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S187892931730066X$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,3549,26567,27924,27925,45780,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29129673$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Matta, Tyler H.</creatorcontrib><creatorcontrib>Flournoy, John C.</creatorcontrib><creatorcontrib>Byrne, Michelle L.</creatorcontrib><title>Making an unknown unknown a known unknown: Missing data in longitudinal neuroimaging studies</title><title>Developmental cognitive neuroscience</title><addtitle>Dev Cogn Neurosci</addtitle><description>The analysis of longitudinal neuroimaging data within the massively univariate framework provides the opportunity to study empirical questions about neurodevelopment. Missing outcome data are an all-to-common feature of any longitudinal study, a feature that, if handled improperly, can reduce statistical power and lead to biased parameter estimates. The goal of this paper is to provide conceptual clarity of the issues and non-issues that arise from analyzing incomplete data in longitudinal studies with particular focus on neuroimaging data. This paper begins with a review of the hierarchy of missing data mechanisms and their relationship to likelihood-based methods, a review that is necessary not just for likelihood-based methods, but also for multiple-imputation methods. Next, the paper provides a series of simulation studies with designs common in longitudinal neuroimaging studies to help illustrate missing data concepts regardless of interpretation. Finally, two applied examples are used to demonstrate the sensitivity of inferences under different missing data assumptions and how this may change the substantive interpretation. The paper concludes with a set of guidelines for analyzing incomplete longitudinal data that can improve the validity of research findings in developmental neuroimaging research.</description><subject>Data Interpretation, Statistical</subject><subject>Humans</subject><subject>Likelihood</subject><subject>Likelihood Functions</subject><subject>Longitudinal data</subject><subject>Longitudinal Studies</subject><subject>Missing data</subject><subject>Neuroimaging</subject><subject>Neuroimaging - methods</subject><issn>1878-9293</issn><issn>1878-9307</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>3HK</sourceid><sourceid>DOA</sourceid><recordid>eNp9Uk1v1DAQjRCIVqU_gAvkyGW3Hn_GICFVFdBKrbjADclynEnwNmsXOyni3-Ow3cJe8GU8z2-ex55XVS-BrIGAPNusOxfWlIAq-ZoQeFIdQ6OalWZEPd3vqWZH1WnOG1IW05Jy-rw6ohqoloodV99u7K0PQ21DPYfbEH_-jbY-yN_WNz7nhdvZydY-1GMMg5_mzgc71gHnFP3WDgsjLyjmF9Wz3o4ZTx_iSfX144cvF5er68-fri7Or1dOcJhWgklw2Cgmeyp74D1DIqBzlrei11JgJ6QC0iLDRrTOMdfSDrhgFomWTrKT6mqn20W7MXeptJF-mWi9-QPENBibJu9GNB0g15KAFlxzB0JTpMo6YQvWcKWL1vud1t3cbrFzGKZkxwPRw5Pgv5sh3huppaZKFIHXOwGXfJ58MCEma4A0ghrJy-QK483DFSn-mDFPZuuzw3G0AeOcDWjJuFQUmkKFvVjMOWH_2AgQs9jAbEyxgVlssEDFBqXm1b8veKzYD70Q3u0IWGZy7zGZ7DwGh51P6Kbyaf4_8r8BQPnCIw</recordid><startdate>20181001</startdate><enddate>20181001</enddate><creator>Matta, Tyler H.</creator><creator>Flournoy, John C.</creator><creator>Byrne, Michelle L.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>3HK</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20181001</creationdate><title>Making an unknown unknown a known unknown: Missing data in longitudinal neuroimaging studies</title><author>Matta, Tyler H. ; Flournoy, John C. ; Byrne, Michelle L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c541t-5361ce8736f26f14f3e051dca4b5f965ed56710be3e85bcc3cb2d1453ae096c63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Data Interpretation, Statistical</topic><topic>Humans</topic><topic>Likelihood</topic><topic>Likelihood Functions</topic><topic>Longitudinal data</topic><topic>Longitudinal Studies</topic><topic>Missing data</topic><topic>Neuroimaging</topic><topic>Neuroimaging - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Matta, Tyler H.</creatorcontrib><creatorcontrib>Flournoy, John C.</creatorcontrib><creatorcontrib>Byrne, Michelle L.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>NORA - Norwegian Open Research Archives</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Developmental cognitive neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Matta, Tyler H.</au><au>Flournoy, John C.</au><au>Byrne, Michelle L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Making an unknown unknown a known unknown: Missing data in longitudinal neuroimaging studies</atitle><jtitle>Developmental cognitive neuroscience</jtitle><addtitle>Dev Cogn Neurosci</addtitle><date>2018-10-01</date><risdate>2018</risdate><volume>33</volume><spage>83</spage><epage>98</epage><pages>83-98</pages><issn>1878-9293</issn><eissn>1878-9307</eissn><abstract>The analysis of longitudinal neuroimaging data within the massively univariate framework provides the opportunity to study empirical questions about neurodevelopment. Missing outcome data are an all-to-common feature of any longitudinal study, a feature that, if handled improperly, can reduce statistical power and lead to biased parameter estimates. The goal of this paper is to provide conceptual clarity of the issues and non-issues that arise from analyzing incomplete data in longitudinal studies with particular focus on neuroimaging data. This paper begins with a review of the hierarchy of missing data mechanisms and their relationship to likelihood-based methods, a review that is necessary not just for likelihood-based methods, but also for multiple-imputation methods. Next, the paper provides a series of simulation studies with designs common in longitudinal neuroimaging studies to help illustrate missing data concepts regardless of interpretation. Finally, two applied examples are used to demonstrate the sensitivity of inferences under different missing data assumptions and how this may change the substantive interpretation. The paper concludes with a set of guidelines for analyzing incomplete longitudinal data that can improve the validity of research findings in developmental neuroimaging research.</abstract><cop>Netherlands</cop><pub>Elsevier Ltd</pub><pmid>29129673</pmid><doi>10.1016/j.dcn.2017.10.001</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1878-9293
ispartof Developmental cognitive neuroscience, 2018-10, Vol.33, p.83-98
issn 1878-9293
1878-9307
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_d1e4960195494c1592e27ac5a6018479
source NORA - Norwegian Open Research Archives; ScienceDirect (Online service); PubMed Central
subjects Data Interpretation, Statistical
Humans
Likelihood
Likelihood Functions
Longitudinal data
Longitudinal Studies
Missing data
Neuroimaging
Neuroimaging - methods
title Making an unknown unknown a known unknown: Missing data in longitudinal neuroimaging studies
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T16%3A09%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Making%20an%20unknown%20unknown%20a%20known%20unknown:%20Missing%20data%20in%20longitudinal%20neuroimaging%20studies&rft.jtitle=Developmental%20cognitive%20neuroscience&rft.au=Matta,%20Tyler%20H.&rft.date=2018-10-01&rft.volume=33&rft.spage=83&rft.epage=98&rft.pages=83-98&rft.issn=1878-9293&rft.eissn=1878-9307&rft_id=info:doi/10.1016/j.dcn.2017.10.001&rft_dat=%3Cproquest_doaj_%3E1963467218%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c541t-5361ce8736f26f14f3e051dca4b5f965ed56710be3e85bcc3cb2d1453ae096c63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1963467218&rft_id=info:pmid/29129673&rfr_iscdi=true