Loading…
Berry phase theory of planar Hall effect in topological insulators
The appearance of negative longitudinal magnetoresistance (LMR) in topological semimetals such as Weyl and Dirac semimetals is understood as an effect of chiral anomaly, whereas such an anomaly is not well-defined in topological insulators. Nevertheless, it has been shown recently in both theory and...
Saved in:
Published in: | Scientific reports 2018-10, Vol.8 (1), p.14983-9, Article 14983 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The appearance of negative longitudinal magnetoresistance (LMR) in topological semimetals such as Weyl and Dirac semimetals is understood as an effect of chiral anomaly, whereas such an anomaly is not well-defined in topological insulators. Nevertheless, it has been shown recently in both theory and experiments that nontrivial Berry phase effects can give rise to negative LMR in topological insulators even in the absence of chiral anomaly. In this paper, we present a quasi-classical theory of another intriguing phenomenon in topological insulators – also ascribed to chiral anomaly in Weyl and Dirac semimetals– the so-called planar Hall effect (PHE). PHE implies the appearance of a transverse voltage in the plane of applied non-parallel electric and magnetic fields, in a configuration in which the conventional Hall effect vanishes. Starting from Boltzmann transport equations we derive the expressions for PHE and LMR in topological insulators in the bulk conduction limit, and show the important role played by orbital magnetic moment. Our theoretical results for magnetoconductance with non-parallel electric and magnetic fields predict detailed experimental signatures in topological insulators – specifically of planar Hall effect – that can be observed in experiments. |
---|---|
ISSN: | 2045-2322 2045-2322 |
DOI: | 10.1038/s41598-018-33258-5 |