Loading…

Biothermal Heating on Human Skin by Millimeter and Sub-Terahertz Waves in Outdoor Environment—A Theoretical Study

The frequency band in the millimeter-wave (MMW) and sub-terahertz (sub-THz) range has shown great potential in mobile communication technology due to the advantages of ultra-large bandwidth and ultra-high data rates. Based on the increasing research activities on MMW/sub-THz waves, biological safety...

Full description

Saved in:
Bibliographic Details
Published in:Applied sciences 2023-07, Vol.13 (14), p.8305
Main Authors: Wei, Menghan, Li, Peian, Lei, Yuanshuai, Bao, Xiue, Ma, Jianjun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The frequency band in the millimeter-wave (MMW) and sub-terahertz (sub-THz) range has shown great potential in mobile communication technology due to the advantages of ultra-large bandwidth and ultra-high data rates. Based on the increasing research activities on MMW/sub-THz waves, biological safety at relevant frequencies must be explored, especially when high-power illumination occurs. Here, its non-ionizing nature plays a vital role, which makes it safe for humans at low illumination powers. However, under high power, the biothermal heating on the skin surface is still a main concern, and lots of research has been conducted in a laboratory. In this article, we analyze the thermal heating effect of human skin in outdoor environments, where atmospheric conditions can significantly impact the propagation of MMW/sub-THz waves. Our analysis is based on rat skin, which has a similar structure to human skin. A theoretical model combining Pennes’ bioheat transfer equation (BHTE), the ITU model, and the Mie scattering theory is developed. Good agreement between calculation results and measured data confirms the efficiency of this model. The influence of rainfall rate, humidity, operating frequency, illumination time, power density, and propagation distance is presented and discussed.
ISSN:2076-3417
2076-3417
DOI:10.3390/app13148305