Loading…

Determination of lipid-bound sulfate by ion chromatography and its application to quantification of sulfolipids from kidneys of various mammalian species

A variety of procedures have been developed for determining the sulfate ester content of various biomolecules. Ion chromatography (IC), that is, quantitation of ionic substances by ion conductimetry after separation by anion-exchange chromatography, has been increasingly utilized for the determinati...

Full description

Saved in:
Bibliographic Details
Published in:Journal of lipid research 2001-10, Vol.42 (10), p.1604-1608
Main Authors: Tadano-Aritomi, K, Hikita, T, Suzuki, A, Toyoda, H, Toida, T, Imanari, T, Ishizuka, I
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A variety of procedures have been developed for determining the sulfate ester content of various biomolecules. Ion chromatography (IC), that is, quantitation of ionic substances by ion conductimetry after separation by anion-exchange chromatography, has been increasingly utilized for the determination of inorganic sulfate in clinical and environmental samples. We adopted suppressed-mode IC to the determination of lipid- or glycolipid-bound sulfate released by acid hydrolysis and found that it has the advantage of increased precision for wide concentration ranges (30 pmol to approximately micromol) and lack of interference from other lipids. To minimize deterioration of the separation column, the lipophilic constituents in the acid hydrolysate were removed by a two-phase partition system of chloroform-methanol-water. The inorganic sulfate was quantitatively extracted into the aqueous phase by replacing water with an alkaline buffer. By this method, the concentration of sulfolipids was determined in the kidney of mammals with various body mass. Sulfolipids were more concentrated in the kidney of smaller animals, which have higher maximum urine concentrating activity per gram of body mass, supporting the hypothesis of the function of sulfolipids as an ion barrier on the luminal surface of renal tubules.
ISSN:0022-2275
DOI:10.1016/s0022-2275(20)32214-8