Loading…
Photovoltaics Plant Fault Detection Using Deep Learning Techniques
Solar energy is the fastest-growing clean and sustainable energy source, outperforming other forms of energy generation. Usually, solar panels are low maintenance and do not require permanent service. However, plenty of problems can result in a production loss of up to ~20% since a failed panel will...
Saved in:
Published in: | Remote sensing (Basel, Switzerland) Switzerland), 2022-08, Vol.14 (15), p.3728 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Solar energy is the fastest-growing clean and sustainable energy source, outperforming other forms of energy generation. Usually, solar panels are low maintenance and do not require permanent service. However, plenty of problems can result in a production loss of up to ~20% since a failed panel will impact the generation of a whole array. High-quality and timely maintenance of the power plant will reduce the cost of its repair and, most importantly, increase the life of the power plant and the total generation of electricity. Manual monitoring of panels is costly and time-consuming on large solar plantations; moreover, solar plantations located distantly are more complicated for humans to access. This paper presents deep learning-based photovoltaics fault detection techniques using thermal images obtained from an unmanned aerial vehicle (UAV) equipped with infrared sensors. We implemented the three most accurate segmentation models to detect defective panels on large solar plantations. The models employed in this work are DeepLabV3+, Feature Pyramid Network (FPN) and U-Net with different encoder architectures. The obtained results revealed intersection over union (IoU) of 79%, 85%, 86%, and dice coefficients of 87%, 92%, 94% for DeepLabV3+, FPN, and U-Net, respectively. The implemented models showed efficient performance and proved effective to resolve these challenges. |
---|---|
ISSN: | 2072-4292 2072-4292 |
DOI: | 10.3390/rs14153728 |