Loading…

Comparison of seven commercial SARS-CoV-2 rapid point-of-care antigen tests: a single-centre laboratory evaluation study

Antigen point-of-care tests (AgPOCTs) can accelerate SARS-CoV-2 testing. As some AgPOCTs have become available, interest is growing in their utility and performance. Here we aimed to compare the analytical sensitivity and specificity of seven commercially available AgPOCT devices. In a single-centre...

Full description

Saved in:
Bibliographic Details
Published in:The Lancet. Microbe 2021-07, Vol.2 (7), p.e311-e319
Main Authors: Corman, Victor M, Haage, Verena Claudia, Bleicker, Tobias, Schmidt, Marie Luisa, Mühlemann, Barbara, Zuchowski, Marta, Jo, Wendy K, Tscheak, Patricia, Möncke-Buchner, Elisabeth, Müller, Marcel A, Krumbholz, Andi, Drexler, Jan Felix, Drosten, Christian
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Antigen point-of-care tests (AgPOCTs) can accelerate SARS-CoV-2 testing. As some AgPOCTs have become available, interest is growing in their utility and performance. Here we aimed to compare the analytical sensitivity and specificity of seven commercially available AgPOCT devices. In a single-centre, laboratory evaluation study, we compared AgPOCT products from seven suppliers: the Abbott Panbio COVID-19 Ag Rapid Test, the RapiGEN BIOCREDIT COVID-19 Ag, the Healgen Coronavirus Ag Rapid Test Cassette (Swab), the Coris BioConcept COVID-19 Ag Respi-Strip, the R-Biopharm RIDA QUICK SARS-CoV-2 Antigen, the nal von minden NADAL COVID-19 Ag Test, and the Roche-SD Biosensor SARS-CoV Rapid Antigen Test. Tests were evaluated on recombinant SARS-CoV-2 nucleoprotein, cultured endemic and emerging coronaviruses, stored respiratory samples with known SARS-CoV-2 viral loads, stored samples from patients with respiratory pathogens other than SARS-CoV-2, and self-sampled swabs from healthy volunteers. We estimated analytical sensitivity in terms of approximate viral concentrations (quantified by real-time RT-PCR) that yielded positive AgPOCT results, and specificity in terms of propensity to generate false-positive results. In 138 clinical samples with quantified SARS-CoV-2 viral load, the 95% limit of detection (concentration at which 95% of test results were positive) in six of seven AgPOCT products ranged between 2·07 × 106 and 2·86 × 107 copies per swab, with an outlier (RapiGEN) at 1·57 × 1010 copies per swab. The assays showed no cross-reactivity towards cell culture or tissue culture supernatants containing any of the four endemic human coronaviruses (HCoV‑229E, HCoV‑NL63, HCoV‑OC43, or HCoV‑HKU1) or MERS-CoV, with the exception of the Healgen assay in one repeat test on HCoV-HKU1 supernatant. SARS-CoV was cross-detected by all assays. Cumulative specificities among stored clinical samples with non-SARS-CoV-2 infections (n=100) and self-samples from healthy volunteers (n=35; cumulative sample n=135) ranged between 98·5% (95% CI 94·2–99·7) and 100·0% (97·2–100·0) in five products, with two outliers at 94·8% (89·2–97·7; R-Biopharm) and 88·9% (82·1–93·4; Healgen). False-positive results did not appear to be associated with any specific respiratory pathogen. The sensitivity range of most AgPOCTs overlaps with SARS-CoV-2 viral loads typically observed in the first week of symptoms, which marks the infectious period in most patients. The AgPOCTs with limit of detections t
ISSN:2666-5247
2666-5247
DOI:10.1016/S2666-5247(21)00056-2