Loading…

Heterotrophic Selenium Incorporation into Chlorella vulgaris K-01: Selenium Tolerance, Assimilation, and Removal through Microalgal Cells

has been applied in the production of selenium (Se) enriched organic biomass. However, limited information exists regarding heterotrophic selenium tolerance and its incorporation into . This study aimed to investigate the potential of using K-01 for selenium biotransformation. To assess the dose-res...

Full description

Saved in:
Bibliographic Details
Published in:Foods 2024-01, Vol.13 (3), p.405
Main Authors: Zhang, Zhenyu, Zhang, Yan, Hua, Yanying, Chen, Guancheng, Fu, Pengcheng, Liu, Jing
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:has been applied in the production of selenium (Se) enriched organic biomass. However, limited information exists regarding heterotrophic selenium tolerance and its incorporation into . This study aimed to investigate the potential of using K-01 for selenium biotransformation. To assess the dose-response effect of Se stress on the strain, time-series growth curves were recorded, growth productivity parameters were calculated, and Gaussian process (GP) regression analysis was performed. The strain's carbon and energy metabolism were evaluated by measuring residual glucose in the medium. Characterization of different forms of intracellular Se and residual Se in the medium was conducted using inductively coupled plasma-mass spectrometry (ICP-MS) and inductively coupled plasma optical emission spectrometer (ICP-OES). The EC50 value for the strain in response to Se stress was 38.08 mg/L. The maximum biomass productivity was 0.26 g/L/d. GP regression analysis revealed that low-level Se treatment could increase the biomass accumulation and the carrying capacity of K-01 in a heterotrophic culture. The maximum organic Se in biomass was 154.00 μg/g DW. These findings lay the groundwork for understanding heterotrophic microalgal production of Se-containing nutraceuticals, offering valuable insights into Se tolerance, growth dynamics, and metabolic responses in K-01.
ISSN:2304-8158
2304-8158
DOI:10.3390/foods13030405